STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2019-2020 and thereafter)

SUBJECT CODE :19PH/MC/SS54

B.Sc. DEGREE EXAMINATION NOVEMBER 2022 BRANCH III - PHYSICS FIFTH SEMESTER

PA TIN	S		MAX. MARKS :100
ANSWER ALL QUESTIONS: 25 marks			
Choose the correct answer:			(10 x 1 = 10)
1.	Inert gases generally have	type of bond.	
	a) covalent b) metallic	c) hydroger	d) Vander Waals
2. Which of the following is a secondary bond?			
	a) Covalent bond b) ionic bo		
3.			
	a) Point imperfection b) line imperfection c) surface imperfection d) Volume		
1	imperfection		
4.	, being thermodynamically unstable, increases the free energy of the crystal.		
	a) Schottky imperfectionb) Frenkel imperfectionc) electronic defectsd) Dislocation		
5.	For impure metals, electrical conductivity is proportional to		where T is the
5.	absolute temperature.		
	a) T^2 b) \sqrt{T}	c) 1/	\sqrt{T} d) T
6.			
0.	a) Watt Ohm ⁻¹ deg ² b) Watt Ol		$m deg^{-2}$ d) Watt deg^{-2}
7.	is found in materials where the atoms, ions or molecules in them have		
	permanent magnetic dipole moment.		
	a) Diamagnetism b) Parama		gnetic d) Ferrimagnetic
8.	In an anti-ferromagnet the susceptibility above the Neel Temperature θ_N is given by		
	a) C/T b) C/(T - 6	c) $C/(T+\theta_N)$) d) $C/(\theta_N)$
9.	. The specific heat of a superconductor shows an abrupt change at T		
	a) = T_c b) < T_c	$c) > T_c$	d) $\leq T_c$
10.	. The isotope effect co-efficient is		
	a) zero		in the range 0.4 to 0.6
	c) generally in the range 0.5 to 1 d) generally greater than 1.		

....2

 $(5 \times 1 = 5)$

Fill in the blanks:

- 11. Crystals which exhibit hydrogen bonding have cohesive energy in the range
- 12. The modulus of Burgers vector is called _____
- 13. Measurement of Hall voltage gives information about the _____ of the charge carrier.
- 15. The effect because of which a superconductor does not have flux density even when a magnetic field is applied is called ______ effect.

Answer briefly:

- 16. Differentiate between covalent bonding and metallic bonding.
- 17. What is Frenkel defect.
- 18. List the successes and failures of Free Electron Theory of metals.
- 19. State the Curie-Weiss Law.
- 20. Differentiate Type –I and Type II superconductors.

SECTION – B

Answer any Five Questions:

- 21.Assume the mutual interaction energy of two particles in each other's field is given as: U_R = -a/r +b/r⁸. Here, a and b are constants and r is the distance between the centre of the particles. Show that if the particles are pulled apart, the molecule will break when $r = (36b/a)^{1/2} = r_0(4.5)^{1/7}$.
- 22. The average energy required to create a Frenkel defect in an ionic crystal A²⁺B²⁻, is 1.4eV. Calculate the ratio of Frenkel defects at 300 K and 600 K in 1g of crystal.
- 23. Discuss the Langevin's theory of diamagnetism.
- 24. Obtain expressions for electrical and thermal conductivities for a conductor. Use these expressions to obtain the expression for Wiedmann-Franz law.
- 25. A magnetic substance has 10^{28} atom/m³. The magnetic moment of each atom is 1.8×10^{-23} Am². Calculate the paramagnetic susceptibility at 300 K. What would be the dipole moment of a bar made of this material 0.1 m long and 1 sq.cm.cross-section placed in a field of 8 x 10^{4} Am. (Given: $\mu_0 = 4\pi \times 10^{-7}$ H/m, $\mu_m = 1.8 \times 10^{-23}$ Am²).
- 26. For a superconducting specimen, the critical fields are respectively 1.4 x 10⁵ and 4.2 x 10⁵ A/m for 14 K and 13 K. Determine the superconducting transition temperature and the critical field at 0K.
- 27. The following are data given for copper:
 - a) Density = $8.92 \times 10^3 \text{ kg/m}^3$
 - b) Resistivity = 1.73×10^{-8} ohm m
 - c) Atomic weight = 63.5 u

Calculate the mobility, average time of collision of electrons in copper obeying classical laws

 $(5 \times 2 = 10)$

(5x6=30)

....3

19PH/MC/SS54

SECTION - C

Answer any Three Questions:

- 28. Discuss the properties of the following types of bonds briefly:
 - a. Metallic bonding (10 marks)
 - b. Van der Waals bonding (5 marks)
- 29. Discuss in detail the two types of line defects with the help of appropriate diagrams.
- 30. Explain Hall Effect. Derive the expressions for various parameters associated with the effect, like Hall Coefficient, Hall Voltage and Hall angle.
- 31. Derive an expression for the equilibrium concentration of Schottky defects in ionic crystals.
- 32. Discuss the thermodynamics of superconductors. Derive the expression for Gibbs free energy, entropy and specific heat.

(3x15=45)