COURSE : MAJOR CORE
PAPER : MATHEMATICAL PHYSICS - II

MAX. MARKS: 100
SECTION A

I. ANSWER ALL QUESTIONS

1. Find the Fourier transform of the Gaussian distribution function $f(x)=N e^{-\alpha x^{2}}$ where N and α are constants.
2. Find the Laplace transform of $\cos a t$.
3. Classify the Partial differential equation $\frac{\partial^{2} u}{\partial t^{2}}+t \frac{\partial^{2} u}{\partial x \partial t}+x \frac{\partial^{2} u}{\partial x^{2}}+\partial \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}+6 u=0$
4. Give examples of partial differential equations in physics.
5. Obtain the generating function of Hermite polynomial.
6. Find $L_{n}{ }^{\prime}(x)$.
7. Give an example of cyclic group with the generator i.
8. What are conjugate elements? How will you construct a class?
9. Write short notes on binomial distribution.
10. Bring out the fallacy, if any, in the following statement: The mean of binomial distribution is 5 and its standard deviation is 3 .
SECTION - B

II. ANSWER ANY FIVE QUESTIONS

11. Obtain the Laplace transform of Dirac delta function.
12. Solve the differential equation $\frac{d x}{d t}+\alpha x=0$ by Laplace transform method subject to the initial condition that $x=x_{0}$ at $t=0$.
13. Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}$
14. Derive the Rodrigue's formula for Hermite polynomial.
15. State and prove the orthogonal property of Laguerre polynomial.
16. Construct a group multiplication table for Group D_{3} and obtain the classes.
17. Arrive at an equation for Poisson's distribution.
SECTION - C

III.ANSWER ANY THREE QUESTION

18. Solve the differential equation with the help of Laplace transform
(i) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=e^{-x} \sin x$ where $y(0)=0$ and $y^{\prime}(0)=1$
(ii) $t \frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}+4 t x=0$ when $x(0)=3$ and $x_{1}(0)=0$
19. (i) Find the temperature in a bar of length 2 whose ends are kept at zero and lateral surface insulated, if the initial temperature is $\sin \frac{\pi x}{2}+3 \sin \frac{5 \pi x}{2}$
(ii) Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ with the boundary conditions $u(x, 0), u(l, t)=0$ where $0<$ $x<l$
20. Obtain the solution of Hermite differential equation.
21. Construct the character table of $\mathrm{C}_{4 \mathrm{v}}$ group symmetry.
22. Derive an equation for the normal distribution.
