STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
(For candidates admitted from the academic year 2019-20 \& thereafter)
SUBJECT CODE : 19MT/PE/FT15
M. Sc. DEGREE EXAMINATION, APRIL 2022

BRANCH I - MATHEMATICS
SECOND SEMESTER

COURSE: ELECTIVE

PAPER: FUZZY SET THEORY AND APPLICATIONS
TIME: 3HOURS
MAX MARKS: 100
SECTION - A
ANSWER ANY FIVE QUESTIONS ONLY:
$(5 \times 2=10)$

1. Obtain the α-cut of the fuzzy set $A(x)=\left\{\begin{array}{l}\frac{(x-25)}{50}, x \in[25,75] \\ \frac{(100-x)}{25}, x \in[75,100] \\ 0, \text { elsewhere }\end{array}\right.$.
2. Compute: ${ }^{\alpha}(\bar{A}), \overline{{ }^{\alpha}} A$
3. If $c(a)=\frac{1}{2}(1+\cos \pi a)$ is a fuzzy complement, show that it is not involutive.
4. Using Extension principle, define a fuzzy function \& its inverse for fuzzy sets.
5. Cite a use of fuzzy relation.

> SECTION - B

ANSWER ANY FIVE QUESTIONS ONLY:

6. Derive a necessary and sufficient condition for a fuzzy set to be convex.
7. Write the features that are responsible for the Paradigm shift from the classical set theory.
8. Prove $A \subseteq B$ iff ${ }^{\alpha}(A) \subseteq{ }^{\alpha} B$ and $A \subseteq B$ iff ${ }^{\alpha+}(A) \subseteq{ }^{\alpha+} B$
9. Write a note on the use Linguistic variables in fuzzy set theory.
10. Show that: $\lim _{w \rightarrow \infty} \min \left[1,\left(a^{w}+b^{w}\right)^{\frac{1}{w}}\right]=\max (a, b)$.
11. Explain Fuzzy Binary Relation.
12. Describe the mathematics of fuzzy controller.

SECTION - C

ANSWER ANY THREE QUESTIONS ONLY:

13. a) Write about the different types of fuzzy sets.
b) Show that the extension principle is strong cutworthy but not cutworthy.
(10+10)
14. a) If $A(x)=\left\{\begin{array}{l}\frac{(x-25)}{50}, x \in[25,75] \\ \frac{(100-x)}{25}, x \in[75,100] \\ 0, \text { elsewhere }\end{array} \quad\right.$ and $\quad B(x)=\left\{\begin{array}{l}\frac{x}{25}, x \in[0,25] \\ \frac{(75-x)}{50}, x \in[25,75] \\ 0, \text { elsewhere }\end{array}\right.$

Solve the fuzzy equation $X+A=B$.
b) Define Fuzzy relational equation and solve the same by decomposing.
15. a) State the conditions required for a function to define fuzzy complement. Discuss the same for Sugeno's class. Find the equilibrium points.
b) Discuss Yager class of functions to describe fuzzy union defining the same. Also check what happens when $\omega \rightarrow \infty$.
16. a) Derive a necessary and sufficient condition for functions to be membership functions of fuzzy numbers.
b) When does the fuzzy complement has a unique equilibrium.
17. a) Discuss the application Fuzzy Mathematics in Industry.
b) Discuss the application Fuzzy Mathematics in Medicine.

