STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2019-20 & thereafter)

SUBJECT CODE : 19MT/PC/TO24

M. Sc. DEGREE EXAMINATION, APRIL 2022 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE: CORE PAPER : TOPOLOGY TIME: 3 HOURS

MAX MARKS:100

SECTION-A (5×2=10)

ANSWER ALL THE QUESTIONS

- 1. Define a topological space.
- 2. Give an example of a connected space.
- 3. Prove that the real line \mathbb{R} is not compact.
- 4. Define Regular and Normal spaces.
- 5. Explain product topology.

SECTION-B $(5 \times 6 = 30)$

ANSWER ANY FIVE QUESTIONS

- 6. Let *Y* be a subspace of *X*. Prove that a set *A* is closed in *Y* if and only if it is equal to the intersection of a closed set of *X* with *Y*.
- 7. Prove that the collection $S = \{\pi_1^{-1}(U)/U \text{ open in } X\} \cup \{\pi_2^{-1}(V)/V \text{ open in } Y\}$ is a subbasis for the product topology on $X \times Y$.
- 8. Prove that a space *X* is locally connected if and only if for every open set *U* of *X*, each component of *U* is open in *X*.
- 9. Prove that the image of a connected space under a continuous map is connected.
- 10. State and prove Extreme value theorem.
- 11. Show that every compact Hausdorff space is normal.
- 12. State and prove Pasting lemma.

SECTION-C $(3 \times 20 = 60)$

ANSWER ANY THREE QUESTIONS

- 13. a) Prove that the collection of all subsets of a set whose complement is either finite or the whole set is a topology.
 - b) Prove that arbitrary union and finite intersections of open sets are open.
 - c) If *A* is a subspace of *X* and *B* is a subspace of *Y*, then prove that the product topology on $A \times B$ is the same as the topology $A \times B$ inherits as a subspace of $X \times Y$.

(6 + 7 + 7)

14. a) If *S* denote the following subset of the plane: $S = \{x \times \sin(1/x)/0 < x \le 1\}$, then prove that \overline{S} is not path connected.

- b) Prove that the union of a collection of connected subspaces of *X* that have a point in common is connected.
- c) Prove that a finite cartesian product of connected spaces is connected.

(6+6+8)

- 15. If *X* is a metrizable space, then prove that the following are equivalent:
 - i) X is compact.
 - ii) *X* is limit point compact.
 - iii) X is sequentially compact.
- 16. State and prove Urysohn Metrization Theorem.
- 17. If *X* and *Y* are topological spaces and $f: X \to Y$, then prove that the following statements are equivalent:
 - i) f is continuous.
 - ii) For every subset A of X, $f(\overline{A}) \subset \overline{f(A)}$.
 - iii) For every closed set *B* of *Y*, the set $f^{-1}(B)$ is closed in *X*.
 - iv) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.
