STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2019-20 & thereafter)

SUBJECT CODE : 19MT/PC/LA24

M. Sc. DEGREE EXAMINATION, APRIL 2022 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE	: CORE	
PAPER	: LINEAR ALGEBRA	
TIME	: 3 HOURS	MAX. MARKS : 100
	Section-A	
		(= 0 1

Answer ALL the questions

(5x2=10)

- 1. If the subspace *M* of dimension '*m*', of a vector space *V* is cyclic with respect to *T*, then show that the dimension of MT^k is *m*-*k* for all $k \le m$.
- 2. Write down the basic Jordan block belonging to the characteristic value λ .
- 3. Prove that similar matrices have the same characteristic polynomial.
- 4. Prove that if *T* and *U* are linear operators on *V*, then $(TU)^*=U^*T^*$.
- 5. Define sesqui-linear form.

Section-B Answer any FIVE questions (5x6=30)

- 6. Prove that two nilpotent linear transformations are similar if and only if they have the same invariants.
- 7. Write down all the possible Jordan form for a 6×6 matrix with the minimal polynomial $x^2(1-x)^2$.
- 8. If $T: V \rightarrow W$ is a linear transformation, then prove that dim $V = \operatorname{rank} T + \operatorname{nullity} T$.
- 9. Let *V* and *W* be finite dimensional inner product spaces over the same field *F*. Then, prove that *V* and *W* are isomorphic if and only if they have the same dimension.
- 10. Let V be a complex vector space and f be a form on V such that $f(\alpha, \alpha)$ is real for all α . Then, prove that f is Hermitian.
- 11. Let *V* be a finite dimensional inner product space, *T* a linear operator on *V* and *B* be an orthonormal basis for *V*. Suppose that the matrix *A* of *T* in the basis *B* is upper triangular then prove that *T* is normal iff *A* is a diagonal matrix.
- 12. Find the characteristic values and characteristic vector corresponding to the characteristic value for the matrix $\begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix}$. Also find the rank and nullity of the corresponding

characteristic space.

Section-C Answer any THREE questions (3x20=60)

- 13. If $T \in A(V)$ has all its characteristic roots in F then obtain the triangular form of the matrix of T.
- 14. a) For each i = 1, 2, ..., k, prove that V_i ≠ {0} and V = V₁ ⊕ V₂ ⊕ ⊕ V_k. Also, prove that the minimal polynomial of T_i is q_i(x)^{l_i} where q_i(x) are distinct irreducible polynomials.
 - b) Prove that every linear transformation T ∈ A_F(V) satisfies its characteristic polynomial and every characteristic root of T is a root of p_T(x).
 (15+5)
- 15. a) State and prove Cayley-Hamilton theorem.

b) Find the minimal polynomial for the matrix
$$\begin{pmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{pmatrix}$$
.
(14+6)

- 16. a) Prove that for every invertible complex $n \times n$ matrix B, there exists a unique lower triangular matrix M with positive entries on the main diagonal such that MB is unitary.
 - b) Let V be a finite dimensional inner product space and T be any linear operator on V.Suppose W is a subspace of V invariant under T, then prove that the orthogonal complement of W is invariant under T*.

(14+6)

17. State and prove the principal axis theorem along with the supporting Lemma(s).
