STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600086

 (For candidates admitted during the academic year 2019-20 \& thereafter)SUBJECT CODE: 19MT/PC/CF44

M.Sc. DEGREE EXAMINATION, April 2022

BRANCH I - MATHEMATICS
FOURTH SEMESTER

COURSE : CORE
 PAPER : CONTINUUM AND FLUID MECHANICS
 TIME : $\mathbf{3}$ HOURS

MAX. MARKS : 100

Section-A
Answer ALL questions $(5 \times 2=10)$

1. Suppose that the equations $a_{i p} a_{j p} c_{j}=b_{i j} c_{j}$ hold for arbitrary c_{i}, then show that $a_{i p} a_{j p}=b_{i j}$.
2. Determine the dyadic $\bar{G}=\bar{D} \cdot \bar{F}$, if $\bar{D}=3 \hat{\imath} \hat{\imath}+2 \hat{\jmath} \hat{\jmath}-\hat{\jmath} \hat{k}+5 \hat{k} \hat{k}$ and $\bar{F}=4 \hat{\imath} \hat{k}+6 \hat{\jmath} \hat{\jmath}-3 \hat{k} \hat{\jmath}+$ $\hat{k} \hat{k}$.
3. If the velocity $\bar{q}=x \hat{\imath}-y \hat{\jmath}$, then determine the equation of the stream lines.
4. Discuss the pressure at a point in rest.
5. Prove that if $\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=f(x, y)$ at all points (x, y) of a region S in the plane $O x, O y$ bounded by a closed curve \mathcal{C} and if f is prescribed at each point (x, y) of S and at each point of \mathcal{C}, then any solution $w=w(x, y)$ satisfying these conditions is unique.

$$
\begin{gathered}
\text { Section - B } \\
\text { Answer ANY FIVE questions }(5 \times 6=30)
\end{gathered}
$$

6. In the x_{i} system, a vector \bar{a} has components $a_{1}=-1, a_{2}=0, a_{3}=1$ and a tensor \bar{A} has its matrix $\left[a_{i j}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 2 \\ 0 & -2 & 0\end{array}\right]$. The $x_{i}{ }^{\prime}$ system is obtained by rotating the x_{i} system about the x_{3} axis through an angle of 45° in the sense of the righthanded screw. Find the components of \bar{a} and the matrix \bar{A} in the $x_{i}{ }^{\prime}$ system.
7. Prove the vector identity $(\bar{a} \times \bar{b}) \cdot(\bar{c} \times \bar{d})=(\bar{a} \cdot \bar{c})(\bar{b} \cdot \bar{d})-(\bar{a} \cdot \bar{d})(\bar{b} \cdot \bar{c})$ using the permutation symbol.
8. A displacement field is given by $\bar{u}=X_{1} X_{2} \widehat{e_{1}}+X_{1}{ }^{2} X_{2} \widehat{e_{2}}+X_{2}{ }^{2} X_{3} \widehat{e_{3}}$. Determine independently the mateial deformation gradient \bar{F} and the material displacement gradient \bar{J} and verify the relation between the two.
9. Liquid flows through a pipe whose surface is the surface of revolution of the curve $y=a+$ $k x^{2} / a$ about the x-axis $(-a \leq x \leq a)$. If the liquid enters at the end $x=-a$ of the pipe with velocity V, show that the time taken by a liquid particle to traverse the entire length of the pipe from $x=-a$ to $x=a$ is $\frac{2 a}{V(1+k)^{2}}\left(1+\frac{2}{3} k+\frac{1}{5} k^{2}\right)$.
10. Derive Bernoulli's equation for potential flow under conservative body forces and deduce the equation for incompressible and steady fluid flow.
11. Discuss the flow for which $w=z^{2}$.
12. Discuss the steady flow through tube of uniform circular cross-section.
Section - C

Answer ANY THREE questions $(3 \times 20=60)$
13. Discuss the three invariants of a second order tensor and prove that for a skew tensor \bar{A}, $I_{\bar{A}}=I I I_{\bar{A}}=0$ and $I I_{\bar{A}}=|\omega|^{2}$, where ω is the dual tensor of \bar{A}.
14. (a) Derive the relation between the stress vector and stress tensor.
(b) Discuss the stress quadric of Cauchy.
15. (a) Derive the equation of continuity of the fluid flow.
(b) Discuss the acceleration of a fluid.
16. (a) Discuss the complex potential for line sources and line sinks.
(b) Find the equations of the streamlines due to uniform line sources of strength m through the points $A(-c, 0), B(c, 0)$ and a uniform line sink of strength $2 m$ through the origin.
17. Derive the Navier-Stokes equations of motion of a viscous fluid. Also discuss the particular cases.

