STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2019 – 20 and thereafter)

SUBJECT CODE: 19CS/MC/AD23

B.C.A. DEGREE EXAMINATION – APRIL 2022 SECOND SEMESTER

COURSE: MAJOR CORE

PAPER : ALGORITHMS AND DATA STRUCTURES

TIME : 3 HOURS

MAX. MARKS: 100

SECTION A							
ANSWER ALL THE QUESTIONS:					$(20 \times 1=20)$		
	Ch	oose the best	answer:				
	1.	The time complexity of insertion sort is					
		a) $O(n^2)$	b) O(n)	c) O (log n)	d) O (1)		
	2.	case indicates the minimum time required for program execution.					
		a) Best case b) Worst case c) Average case d) Null case					
	3.	lin	linked list can be traversed in both forward and backward				
		a) circular	b) singly	c) two-way	d) array		
	4.	The unused n	nemory cells ir	the arrays are	linked together using _	as its	
		pointer varial	ole.				
		a) LINK	B) FRONT	C) NEW	D) AVAIL		
	5.	If FRONT =	2 and REAR =	3 in a QUEUE	of 4 elements, then	is the value of	
REAR if an element is added to the QUEUE.							
		a) 2	b)1	c) 4	d) 0		
	6.	. /+AB – CD is in form of expression.					
				c) infix			
	7.	A path ending in a leaf in tree data structure is called as					
		a) node	b) branch	c) edge	d) level		
8. The value at node N is greater than or equal to the value at e						the children of N	
in							
				c) minmax he	eap d) heap		
9 graph does not allow either multiple edges or loops.							
		a) planar	b) multi	c) sin	iple d) pseudo		
10. The number of edges in a simple, n-vertex, complete graph is						•	
		a) n*(n-2)	b) n*(n-1)	c) $n*(n-1)/2$	d) n/2		
	Fil	l in the blank					
	11	:.	on informal h	iah laval dagami	ntion of a commutan nuc	amam an alaamithm	
		1 is an informal high-level description of a computer program or algorithm.					
		12. Arrays are type of data structures.					
	13.	13 is a technique in which computer periodically collects all deleted spaces into free storage list.					
	1 /	1					
	14. Inheader list the value of PTR is equal to START and not PTR = NULL.						

- 15. In stack the TOP pointer variable denotes _____.
- 16. In recursion there must be a _____ criteria, for which the procedure does not call itself.
- 17. The nodes with no successors in a graph are called as _____.
- 18. ______ is the pre order traversal of below tree.

- 19. The sequential representation of graph in memory is given by ______.
- 20. A node is called as _____ in graph if it has zero indegree and positive outdegree.

SECTION - B

ANSWER ALL THE QUESTIONS:

 $(5 \times 2 = 10)$

- 21. Write the characteristics of an algorithm.
- 22. Write the overflow and underflow condition of a linked list.
- 23. What are the operations in queue?
- 24. What are the three properties of heap data structure?
- 25. Write the adjacency list of node A.

SECTION - C

ANSWER ANY EIGHT OF THE FOLLOWING:

 $(8 \times 5 = 40)$

- 26. Write a note on asymptotic notations.
- 27. Write the binary search algorithm and explain.
- 28. Explain with an algorithm, the insertion of an element at the beginning of the list using singly linked list.
- 29. Explain the insertion and deletion of an element in the list using array implementation.
- 30. Explain stack and its operations with suitable algorithms.

- 31. Write the Quicksort algorithm.
- 32. Explain binary search tree with examples.
- 33. Sort the following list using Heap sort algorithm: 23,12,7,54,38
- 34. Discuss on graph tree structure.
- 35. Write the breadth first graph traversal algorithm with example.

SECTION - D

ANSWER ANY THREE OF THE FOLLOWING:

 $(3 \times 10 = 30)$

- 36. Write and trace the bubble sort algorithm for the given elements :23,6,15,45.
- 37. Write the algorithm to insert an element using two –way linked list.
- 38. Illustrate the conversion of infix to postfix expression.
- 39. Write the algorithm and explain the in-order traversal in binary tree.
- 40. Explain the Shortest Path algorithm.
