STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86

(For candidates admitted during the academic year 2019–2020 & thereafter)

SUBJECT CODE: 19EC/PC/EC44

M. A. DEGREE EXAMINATION, APRIL 2022 BRANCH III – ECONOMICS FOURTH SEMESTER

COURSE : CORE

PAPER : ECONOMETRIC METHODS II

TIME : 3 HOURS MAX. MARKS: 100

SECTION - A

ANSWER ANY FIVE QUESTIONS. EACH ANSWER NOT TO EXCEED 300 WORDS

 $(5 \times 8 = 40)$

1. Use the 'd' statistic to detect for AC in the following series:

e_t: -2 1.5 2.5 -3 0 3 0.5 -3.5 2 3

- 2. How are the simultaneous equation models used to analyse a two-way cause and effect relationship? Explain with the help of Keynes theory of income determination.
- 3. Explain the role of time lags in economics.
- 4. Discuss the Granger test in testing for causality in economics.
- 5. Derive the WLS estimators.
- 6. What are the consequences of multicollinearity in independent variables?
- 7. What are specification errors? Explain.

SECTION - B

ANSWER ANY THREE QUESTIONS. EACH ANSWER NOT TO EXCEED 1200 WORDS. $(3 \times 20 = 60)$

8.
$$M_t^d = \beta_0 + \beta_1 Y_t + \beta_2 R_t + \beta_3 P_t + U_{1t}$$
 -----(1) $M_t^s = \alpha_0 + \alpha_1 Y_t + 2_{1t}$ -----(2)

- (a) Are the demand and supply function identified?
- (b) Derive the reduced form equations.
- 9. Can OLS estimation method be used to estimate coefficients of simultaneous equation models?
- 10. Write short notes on
 - (a) Autoregressive models (b) Markov stochastic process
 - (c) Unit Root test (d)
- (d) Cointegration test.
- 11. Prove that the estimators of a general linear model are BLUE stimators.
- 12. Explain Distributed Lag models.

Eqn.	\mathbf{Y}_1	\mathbf{Y}_2	\mathbf{Y}_3	Y_4	Y ₅	X_1	X_2	X_3	X_4
1	1	β_{12}	0	β_{14}	0	Γ ₁₁	0	0	Γ ₁₄
2	0	1	B_{23}	B ₂₄	0	0	Γ ₂₂	Γ ₂₃	0
3	B ₃₁	0	1	B ₃₄	B ₃₅	0	0	Γ ₃₃	Γ ₃₄
4	0	B ₄₂	0	1	0	Γ ₄₁	0	Γ ₄₃	0
5	B ₅₁	0	0	B ₅₄	1	0	Γ ₅₂	Γ ₅₃	0
