STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2019-20 & thereafter)

SUBJECT CODE : 19MT/MC/VL64 B. Sc. DEGREE EXAMINATION, APRIL 2022 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE	: MAJOR CORE	
PAPER	: VECTOR SPACES AND LINEAR TRANSFORMATIONS	
TIME	: 3 HOURS	MAX. MARKS : 100
SECTION – A		

ANSWER ANY TEN QUESTIONS.

 $(10 \times 2 = 20)$

- 1. Define linear dependence and independence of vectors in a vector space.
- 2. Why the set $\{(1,3), (4,1), (1,1)\}$ cannot be a bases for the vector space \mathbb{R}^2 ?
- 3. Prove that the set U of 2×2 diagonal matrices is a subspace of the vector space M_{22} of 2×2 matrices.
- 4. Determine the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 0 & 1 & 2 \end{bmatrix}$.
- 5. State Gram Schmidt Orthogonalization process.
- 6. Define kernel and range of a linear transformation.
- 7. Show that the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (2x, x + y) is linear.
- 8. Define reflection.
- 9. Find the coordinate vector $\overline{u} = (4, 5)$ relative to the basis $B = \{(2, 1), (-1, 1)\}$.
- 10. Define similarity transformation.
- 11. Define inner product on a real vector space.
- 12. Show that the functions f(x) = 3x 2 and g(x) = x are orthogonal in P_n with inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$.

SECTION – B

ANSWER ANY FIVE QUESTIONS.

(5×8=40)

- 13. Prove if $\{\overline{v_1}, \overline{v_2}, ..., \overline{v_n}\}$ is a basis for a vector space V, then $\{\overline{w_1}, \overline{w_2}, ..., \overline{w_m}\}$ a set of more than n vectors in V is linearly dependent. Also prove that all bases for a vector space have the same number of vectors.
- 14. a) State and prove Orthogonal matrix theorem. b) The vectors (1, 0, 0), $\left(0, \frac{3}{5}, \frac{4}{5}\right)$, $\left(0, \frac{4}{5}, -\frac{3}{5}\right)$ form a basis for R^3 then express the vector (7, -5, 10) as a linear combination of these vectors. (5+3)

 $(2 \times 20 = 40)$

- 14
- 15. Construct an orthonormal basis for the set of vectors

{(1, 2, 0, 3), (4, 0, 5, 8), (8, 1, 5, 6)} that form a basis for a three dimensional space V of R^4 .

- 16. Prove that for a linear transformation $T: U \to V$, the kernel of T is a subspace of U and range of T is a subspace of V.
- 17. Prove that the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is invertible if and only if it is non singular. Also prove the inverse is unique and linear.
- 18. Define transition matrix and find the transition matrix from a basis $B = \{(1, 2), (3, -1)\}$ to $B' = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

{(3,1), (5,2)} of \mathbb{R}^2 . Also if \overline{u} is a vector such that $\overline{u}_B = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, find $\overline{u}_{B'}$.

19. Define angle between two vectors and determine the angle between the functions $f(x) = 5x^2$ and

g(x) = 3x in P_n with inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$.

SECTION -C

ANSWER ANY TWO QUESTIONS.

- 20. a) Define a vector space and prove that C^n is a vector space.
 - b) Find the basis for the subspace V of R^4 spanned by the vectors (1, 2, 3, 4), (-1, -1, -4, -2), (3, 4, 11, 8). (14+6)
- 21. a) State and prove rank or nullity theorem.
 - b) If $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation defined by T(x, y, z) = (x + y, 2z), then find the matrix of *T* with respect to the bases {(1, 1, 0), (0, 1, 4), (1, 2, 3)} and {(1, 0), (0, 2)}. Also find the image of the vector (2, 3, 5). (10+10)
- 22. a) Define matrix representation of a linear transformation $T: U \to V$ with respect to the bases $B = \{\overline{u_1}, \dots, \overline{u_n}\}$ and $B' = \{\overline{u_1'}, \dots, \overline{u_n'}\}$. Also, prove that if \overline{u} is a vector in U with image $T(\overline{u})$, having coordinate vectors \overline{a} and \overline{b} relative to the bases then $\overline{b} = A\overline{a}$.
 - b) Prove that $\langle \bar{u}, \bar{v} \rangle = ae + 2bf + 3cg + 4dh$ is an inner product where $\bar{u} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,

 $\bar{v} = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$ be arbitrary elements of M_{22} . Also determine the inner products of the pair of matrices $\bar{u} = \begin{bmatrix} -2 & 4 \\ 1 & 0 \end{bmatrix}$, $\bar{v} = \begin{bmatrix} 5 & -2 \\ 0 & -3 \end{bmatrix}$ (10+10)