SUBJECT CODE : 19MT/MC/VL64
B. Sc. DEGREE EXAMINATION, APRIL 2022

BRANCH I - MATHEMATICS
SIXTH SEMESTER

COURSE : MAJOR CORE

PAPER : VECTOR SPACES AND LINEAR TRANSFORMATIONS
TIME : 3 HOURS
MAX. MARKS : 100
SECTION - A

ANSWER ANY TEN QUESTIONS.

1. Define linear dependence and independence of vectors in a vector space.
2. Why the set $\{(1,3),(4,1),(1,1)\}$ cannot be a bases for the vector space R^{2} ?
3. Prove that the set U of 2×2 diagonal matrices is a subspace of the vector space M_{22} of 2×2 matrices.
4. Determine the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 8 \\ 0 & 1 & 2\end{array}\right]$.
5. State Gram -Schmidt Orthogonalization process.
6. Define kernel and range of a linear transformation.
7. Show that the transformation $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(2 x, x+y)$ is linear.
8. Define reflection.
9. Find the coordinate vector $\bar{u}=(4,5)$ relative to the basis $B=\{(2,1),(-1,1)\}$.
10. Define similarity transformation.
11. Define inner product on a real vector space.
12. Show that the functions $f(x)=3 x-2$ and $g(x)=x$ are orthogonal in P_{n} with inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$.

SECTION -B

ANSWER ANY FIVE QUESTIONS.

13. Prove if $\left\{\overline{v_{1}}, \overline{v_{2}}, \ldots, \overline{v_{n}}\right\}$ is a basis for a vector space V, then $\left\{\overline{w_{1}}, \overline{w_{2}}, \ldots, \overline{w_{m}}\right\}$ a set of more than n vectors in V is linearly dependent. Also prove that all bases for a vector space have the same number of vectors.
14. a) State and prove Orthogonal matrix theorem. b) The vectors ($1,0,0$), ($0, \frac{3}{5}, \frac{4}{5}$), $\left(0, \frac{4}{5},-\frac{3}{5}\right)$ form a basis for R^{3} then express the vector $(7,-5,10)$ as a linear combination of these vectors. (5+3)
15. Construct an orthonormal basis for the set of vectors
$\{(1,2,0,3),(4,0,5,8),(8,1,5,6)\}$ that form a basis for a three dimensional space V of R^{4}.
16. Prove that for a linear transformation $T: U \rightarrow V$, the kernel of T is a subspace of U and range of T is a subspace of V.
17. Prove that the linear transformation $T: R^{n} \rightarrow R^{n}$ is invertible if and only if it is non singular. Also prove the inverse is unique and linear.
18. Define transition matrix and find the transition matrix from a basis $B=\{(1,2),(3,-1)\}$ to $B^{\prime}=$ $\{(3,1),(5,2)\}$ of R^{2}. Also if \bar{u} is a vector such that $\bar{u}_{B}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$, find $\bar{u}_{B^{\prime}}$.
19. Define angle between two vectors and determine the angle between the functions $f(x)=5 x^{2}$ and $g(x)=3 x$ in P_{n} with inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$.

SECTION - C

ANSWER ANY TWO QUESTIONS.

20. a) Define a vector space and prove that C^{n} is a vector space.
b) Find the basis for the subspace V of R^{4} spanned by the vectors $(1,2,3,4),(-1,-1,-4,-2)$, $(3,4,11,8)$.
21. a) State and prove rank or nullity theorem.
b) If $T: R^{3} \rightarrow R^{2}$ is a linear transformation defined by $T(x, y, z)=(x+y, 2 z)$, then find the matrix of T with respect to the bases $\{(1,1,0),(0,1,4),(1,2,3)\}$ and $\{(1,0),(0,2)\}$. Also find the image of the vector $(2,3,5)$.
22. a) Define matrix representation of a linear transformation $T: U \rightarrow V$ with respect to the bases $B=\left\{\overline{u_{1}}, \ldots, \overline{u_{n}}\right\}$ and $B^{\prime}=\left\{\overline{u_{1}{ }^{\prime}}, \ldots, \overline{u_{n}{ }^{\prime}}\right\}$. Also, prove that if \bar{u} is a vector in U with image $T(\bar{u})$, having coordinate vectors \bar{a} and \bar{b} relative to the bases then $\bar{b}=A \bar{a}$.
b) Prove that $\langle\bar{u}, \bar{v}\rangle=a e+2 b f+3 c g+4 d h$ is an inner product where $\bar{u}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, $\bar{v}=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$ be arbitrary elements of M_{22}. Also determine the inner products of the pair of matrices $\bar{u}=\left[\begin{array}{cc}-2 & 4 \\ 1 & 0\end{array}\right], \bar{v}=\left[\begin{array}{cc}5 & -2 \\ 0 & -3\end{array}\right]$

a $A \operatorname{AaAAAAAA}$

