STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2019-20 & thereafter)

SUBJECT CODE : 19MT/MC/SS44

B. Sc. DEGREE EXAMINATION, APRIL 2022 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE: MAJOR COREPAPER: SEQUENCE AND SERIESTIME: 3 HOURS

SECTION – A

ANSWER ANY TEN QUESTIONS:

- 1. Define composition of functions and find $g \circ f$ if f(x) = x + 7 and g(x) = 2xwhere $(x \in I)$.
- 2. What is a Cantor set?
- 3. Define least upper bound and give an example of a set which has an upper bound but not a least upper bound.
- 4. Define subsequence of real numbers and hence find a subsequence of $C = \{c_n\}_{n=1}^{\infty} = \{\sqrt{n}\}_{n=1}^{\infty}$, if the subsequence of positive integers is defined by $N = \{n_i\}_{i=1}^{\infty} = \{i^4\}_{i=1}^{\infty}$.
- 5. Can a subsequence of a divergent sequence converge? Justify with a suitable example.
- 6. Define limit superior of a sequence of real numbers.

7. Discuss the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{(1-n)}{(1+2n)}$.

- 8. Define absolute convergence and conditional convergence.
- 9. Give an example of a series which dominates the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ with justification.

10. Prove that the series $\sum_{n=1}^{\infty} \frac{2n}{(n^2-4n+7)}$ diverges.

- 11. Define Fourier series.
- 12. Prove that $\int_{-a}^{a} f(x) dx = 0$, if f(x) is odd.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 8 = 40)$

- 13. Prove that the countable union of countable sets is countable.
- 14. Prove that the limit of a convergent sequence is unique.
- 15. Prove that $\{x^n\}_{n=1}^{\infty}$ converges to 0, if 0 < x < 1 and diverges if $1 < x < \infty$.
- 16. If $\{s_n\}_{n=1}^{\infty}$ is a convergent sequence of real numbers, then prove that $\limsup_{n \to \infty} s_n = \lim_{n \to \infty} s_n$.
- 17. Prove that if $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} a_n$ converges.
- 18. State and prove comparison test and use it to show that the geometric series $\sum_{n=0}^{\infty} x^n$ converges absolutely for any $x \in (-1, 1)$.

19. Expand f(x) as Fourier series in the interval $-\pi$ to π if $f(x) = \begin{cases} -x & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases}$

..2

19MT/MC/SS44

 $(10 \times 2 = 20)$

MAX. MARKS : 100

SECTION – C

ANSWER ANY TWO QUESTIONS:

20. a) Prove that the inverse image of the union of two sets is the union of the inverse images.

 $(2 \times 20 = 40)$

- b) State and prove Ratio test. (8+12)
- 21. a) State and prove Nested interval theorem.
 - b) Find the limit of the sequence $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$. (8+12)
- 22. Show that in the range 0 to 2π , the expansion of e^x as a Fourier series is

$$e^{x} = \frac{e^{2\pi} - 1}{\pi} \Big\{ \frac{1}{2} + \sum_{n=1}^{\infty} \frac{\cos nx}{n^{2} + 1} - \sum_{n=1}^{\infty} \frac{n \sin nx}{n^{2} + 1} \Big\}.$$