STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086

 (For candidates admitted from the academic year 2019-20 \& thereafter)SUBJECT CODE : 19MT/MC/SS44

B. Sc. DEGREE EXAMINATION, APRIL 2022
 BRANCH I - MATHEMATICS
 FOURTH SEMESTER

COURSE : MAJOR CORE
PAPER : SEQUENCE AND SERIES
TIME : 3 HOURS MAX. MARKS : 100
SECTION - A

ANSWER ANY TEN QUESTIONS:

$(10 \times 2=20)$

1. Define composition of functions and find $g \circ f$ if $f(x)=x+7$ and $g(x)=2 x$ where $(x \in I)$.
2. What is a Cantor set?
3. Define least upper bound and give an example of a set which has an upper bound but not a least upper bound.
4. Define subsequence of real numbers and hence find a subsequence of $C=\left\{c_{n}\right\}_{n=1}^{\infty}=$ $\{\sqrt{n}\}_{n=1}^{\infty}$, if the subsequence of positive integers is defined by $N=\left\{n_{i}\right\}_{i=1}^{\infty}=\left\{i^{4}\right\}_{i=1}^{\infty}$.
5. Can a subsequence of a divergent sequence converge? Justify with a suitable example.
6. Define limit superior of a sequence of real numbers.
7. Discuss the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{(1-n)}{(1+2 n)}$.
8. Define absolute convergence and conditional convergence.
9. Give an example of a series which dominates the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ with justification.
10. Prove that the series $\sum_{n=1}^{\infty} \frac{2 n}{\left(n^{2}-4 n+7\right)}$ diverges.
11. Define Fourier series.
12. Prove that $\int_{-a}^{a} f(x) d x=0$, if $f(x)$ is odd.

> SECTION - B

ANSWER ANY FIVE QUESTIONS:

13. Prove that the countable union of countable sets is countable.
14. Prove that the limit of a convergent sequence is unique.
15. Prove that $\left\{x^{n}\right\}_{n=1}^{\infty}$ converges to 0 , if $0<x<1$ and diverges if $1<x<\infty$.
16. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is a convergent sequence of real numbers, then prove that $\limsup _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} s_{n}$.
17. Prove that if $\sum_{n=1}^{\infty} a_{n}$ converges absolutely, then $\sum_{n=1}^{\infty} a_{n}$ converges.
18. State and prove comparison test and use it to show that the geometric series $\sum_{n=0}^{\infty} x^{n}$ converges absolutely for any $x \in(-1,1)$.
19. Expand $f(x)$ as Fourier series in the interval $-\pi$ to π if $f(x)=\left\{\begin{array}{cc}-x & -\pi<x<0 \\ x & 0<x<\pi\end{array}\right.$.

SECTION - C

ANSWER ANY TWO QUESTIONS:

20. a) Prove that the inverse image of the union of two sets is the union of the inverse images.
b) State and prove Ratio test.
21. a) State and prove Nested interval theorem.
b) Find the limit of the sequence $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$.
22. Show that in the range 0 to 2π, the expansion of e^{x} as a Fourier series is

$$
e^{x}=\frac{e^{2 \pi}-1}{\pi}\left\{\frac{1}{2}+\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}+1}-\sum_{n=1}^{\infty} \frac{n \sin n x}{n^{2}+1}\right\} .
$$

