SUBJECT CODE : 19MT/MC/PM65
B. Sc. DEGREE EXAMINATION, APRIL 2022
BRANCH I - MATHEMATICS
SIXTH SEMESTER

COURSE : MAJOR CORE

PAPER : PRINCIPLES OF MECHANICS
TIME : 3 HOURS
MAX. MARKS : 100
SECTION - A

ANSWER ALL QUESTIONS.

(10X2=20)

1. State Lami's Theorem.
2. Two forces of magnitude 20 kg and 8 kg respectively are inclined at an angle of 60°. Find the magnitude and direction of the resultant.
3. The resultant of two forces P and Q is R. If the direction of one of them is reversed then the resultant is S. Prove that $R^{2}+S^{2}=2\left(P^{2}+Q^{2}\right)$.
4. Define moment of a force.
5. Define couple.
6. Forces $\overline{3 P}, \overline{4 P}$, and $\overline{5 P}$ act along the sides $B C, C A$ and $A B$ of a triangle $A B C$ of side ' a '. Find the moment of the resultant about A.
7. Define cone of friction.
8. Discuss toppling of the bodies.
9. Prove that $y^{2}=c^{2}+s^{2}$ for a common catenary.
10. Define terminal velocity.
11. Determine the moment of inertia of the rod of length $4 a$ about a line through one end and perpendicular to it.
12. State parallel axis theorem.

SECTION -B

ANSWER ANY FIVE QUESTIONS.

(5X8=40)
13. State and prove triangle law of forces. Prove the converse also.
14. A weight of 50 N is suspended by two light inelastic strings of length 7 m and 24 m from two points at same horizontal level 25 m apart. Find the tensions in the string.
15. Two unlike parallel forces P and $Q(P>Q)$ act at A and $B . P$ and Q are each increased by R. Show that the resultant will move through a distance $\frac{R}{P-Q} A B$.
16. State and prove the theorem on reduction of coplanar forces.
17. A uniform ladder rests with its lower end on a rough horizontal floor and its upper end against a smooth vertical wall, if the ladder makes an angle 30° with the vertical wall when it is in limiting equilibrium. Find the coefficient of friction at the floor.
18. A uniform chain of length $2 l$ is to be suspended from two points A and B in the same horizontal line so that either terminal tension is n times that at the lowest point. Show that the span $A B$ must be $\frac{2 l}{\sqrt{n^{2}-1}} \log \left(n+\sqrt{n^{2}-1}\right)$.
19. Discuss the moment of inertia of a circular ring of radius ' a '.

SECTION -C

ANSWER ANY TWO QUESTIONS.

$(2 \times 20=40)$
20. a) The angle between two forces of equal magnitude is θ and the resultant is R. If the angle is decreased by $\pi / 3$, then the resultant is $\sqrt{3} R$. Find θ.
b) State and prove Varignon's theorem.
21. a) A rod whose centre of gravity divides it into two parts a and b is placed inside a smooth sphere. Show that if θ be its inclination to the horizon in the position of equilibrium and 2α be the angle subtended by the rod at the centre of the sphere, then $\tan \theta=\frac{b-a}{b+a} \tan \alpha$.
b) Derive the intrinsic equation and Cartesian equation of the common catenary. (8+12)
22. a) A particle falls under gravity in a medium whose resistance varies as the square of the velocity. Discuss the motion.
b) Find the moment of inertia of the rectangular parallelepiped of edges $2 a, 2 b$ and $2 c$.

