STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2019-20 & thereafter)

SUBJECT CODE : 19MT/MC/DM43

B. Sc. DEGREE EXAMINATION, APRIL 2022 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE	:	MAJOR CORE
PAPER	:	DISCRETE MATHEMATICS
TIME	:	3 HOURS

MAX. MARKS : 100

SECTION – A

ANSWER ANY TEN QUESTIONS:

(10×2=20)

- 1. Define Logical equivalence of propositions.
- 2. Define Contrapositive proposition and give the contrapositive of the statement: "If John is a poet, then he is poor".
- 3. Define universal quantifier and determine the truth value of the statement $\exists x \forall y, x^2 < y + 1$, where $U = \{1, 2, 3\}$ is the universal set.
- 4. Define Bounded Lattice.

- 5. Draw the Hasse diagram of $L_1 \times L_2$, where L_1 and L_2 be the chains of divisors of 4 and 9.
- 6. Define join irreducible and give example.
- 7. Show that (a')' = a, where a is an element of a Boolean algebra.
- 8. Find the consensus Q of $P_1 = xyz's$ and $P_2 = xy't$.
- 9. Define a Finite State Machine.
- 10. Design a finite state automaton that accepts precisely those strings over $\{a, b\}$ that contains an odd number of a's.
- 11. Define concatenation of languages and find the concatenation of $L_1 = \{a, b^3\}$ and $L_2 = \{a^3, ab^2, b\}$.
- 12. Define Kleene closure of a Language.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

13. Write the condition for an argument to be valid and check the validity of the argument

 $p \rightarrow \neg q, r \rightarrow q, r \vdash \neg p.$

- 14. State and prove the idempotent property and associative property of a Lattice.
- 15. If (L, \leq) is a lattice and $a \leq b \leq c$, where $a, b, c \in L$, then show that
 - (i) $a \lor b = b \land c$.
 - (ii) $(a \land b) \lor (b \land c) = (a \lor b) \land (a \lor c).$

(4+4)

 $(5 \times 8 = 40)$

16. Find the complete sum of product form for the following expressions:

(i)
$$x_1 \forall x_2$$
.
(ii) $x(y'z)'$ (4+4)

- 17. a) Draw the logic circuit for ab' + a'b.
 - b) Find the Boolean expression for the following logic diagram:

- 18. Draw the transition diagram for the finite state machine $M(I, S, 0, s_0, f, g)$, where $I = \{a, b\}, S = \{s_0, s_1, s_2\}, 0 = \{x, y, z\}$, Initial state: s_0 .Next state function $f: S \times I \rightarrow S$ defined by $f(s_0, a) = s_1$, $f(s_1, a) = s_2$, $f(s_2, a) = s_0$, $f(s_0, b) = s_2$, $f(s_1, b) = s_1$, $f(s_2, b) = s_1$ Output function $g: S \times I \rightarrow 0$ defined by $g(s_0, a) = x$, $g(s_1, a) = x$, $g(s_2, a) = z$, $g(s_0, b) = y$, $g(s_1, b) = z$, $g(s_2, b) = y$. Also, find the output string for the input string *abaab*.
- 19. a) Define regular expression and language over a finite state of symbols.
 - b) Find a regular expression *r* such that $L = \{a^m b^n : m, n > 0\}$ be a language over $A = \{a, b\}.$

ANSWER ANY TWO QUESTIONS:

- 20. a) Find the conjunctive normal form and disjunctive normal form of $p \leftrightarrow (\neg p \lor \neg q)$ using the laws of algebraic propositions.
 - b) If (L_1, \leq) and (L_2, \leq) are distributive lattices, then prove that (L, \leq) , where $L = L_1 \times L_2$ is a distributive lattice. (10+10)

(3+5)

(4+4)

 $(2 \times 20 = 40)$

21. a) State and prove De Morgan's law for a Boolean algebra. Also show the uniqueness of complement in a Boolean algebra.

b) Draw the transition table and transition Diagram for FSA, $M = \{I, S, A, s_0, f\}$, where $I = \{0,1,2,3,4,5,6,7,8,9\}$, $S = \{s_0, s_1, s_2\}$, $A = \{s_0\}$, $a \in \{0,3,6,9\}$, $b \in \{1,4,7\}$, $c \in \{2,5,8\}$, next state function defined by $f(s_0, a) = s_0$, $f(s_0, b) = s_1$, $f(s_0, c) = s_2$, $f(s_1, a) = s_1$, $f(s_1, b) = s_2$, $f(s_1, c) = s_0$, $f(s_2, a) = s_2$, $f(s_2, b) = s_0$, $f(s_2, c) = s_1$. Does this automaton accept 672 and 7348? (12+8)

- 22. a) Find the prime implicants and minimal sum of product form for the expression E(x, y, z) = xyz + x'z' + xyz' + x'y'z + x'yz' by consensus method.
 - b) Determine the language accepted by the automaton shown in the transition diagram:

