SUBJECT CODE : 19MT/MC/DM43

B. Sc. DEGREE EXAMINATION, APRIL 2022
 BRANCH I - MATHEMATICS
 FOURTH SEMESTER

COURSE : MAJOR CORE
PAPER : DISCRETE MATHEMATICS
TIME : 3 HOURS
MAX. MARKS : 100
SECTION - A

ANSWER ANY TEN QUESTIONS:

1. Define Logical equivalence of propositions.
2. Define Contrapositive proposition and give the contrapositive of the statement: "If John is a poet, then he is poor".
3. Define universal quantifier and determine the truth value of the statement $\ni x \forall y, x^{2}<y+$ 1 , where $U=\{1,2,3\}$ is the universal set.
4. Define Bounded Lattice.
5. Draw the Hasse diagram of $L_{1} \times L_{2}$, where L_{1} and L_{2} be the chains of divisors of 4 and 9 .
6. Define join irreducible and give example.
7. Show that $\left(a^{\prime}\right)^{\prime}=a$, where a is an element of a Boolean algebra.
8. Find the consensus Q of $P_{1}=x y z^{\prime} s$ and $P_{2}=x y^{\prime} t$.
9. Define a Finite State Machine.
10. Design a finite state automaton that accepts precisely those strings over $\{a, b\}$ that contains an odd number of a^{\prime} s.
11. Define concatenation of languages and find the concatenation of $L_{1}=\left\{a, b^{3}\right\}$ and $L_{2}=$ $\left\{a^{3}, a b^{2}, b\right\}$.
12. Define Kleene closure of a Language.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

13. Write the condition for an argument to be valid and check the validity of the argument

$$
p \rightarrow \neg q, r \rightarrow q, r \vdash \neg p
$$

14. State and prove the idempotent property and associative property of a Lattice.
15. If (L, \leq) is a lattice and $a \leq b \leq c$, where $a, b, c \in L$, then show that
(i) $a \vee b=b \wedge c$.
(ii) $(a \wedge b) \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$.
16. Find the complete sum of product form for the following expressions:
(i) $x_{1} \vee x_{2}$
(ii) $x\left(y^{\prime} z\right)^{\prime}$
17. a) Draw the logic circuit for $a b^{\prime}+a^{\prime} b$.
b) Find the Boolean expression for the following logic diagram:

18. Draw the transition diagram for the finite state machine $M\left(I, S, O, s_{o}, f, g\right)$, where $I=$ $\{a, b\}, S=\left\{s_{0}, s_{1}, s_{2}\right\}, O=\{x, y, z\}$, Initial state: s_{0}. Next state function $f: S \times I \rightarrow S$ defined by $f\left(s_{0}, a\right)=s_{1}, f\left(s_{1}, a\right)=s_{2}, f\left(s_{2}, a\right)=s_{0}, f\left(s_{0}, b\right)=s_{2}, f\left(s_{1}, b\right)=s_{1}$, $f\left(s_{2}, b\right)=s_{1}$ Output function $g: S \times I \rightarrow O$ defined by $g\left(s_{0}, a\right)=x, g\left(s_{1}, a\right)=x$, $g\left(s_{2}, a\right)=z, g\left(s_{0}, b\right)=y, g\left(s_{1}, b\right)=z, g\left(s_{2}, b\right)=y$. Also, find the output string for the input string $a b a a b$.
19. a) Define regular expression and language over a finite state of symbols.
b) Find a regular expression r such that $L=\left\{a^{m} b^{n}: m, n>0\right\}$ be a language over $A=\{a, b\}$.

SECTION - C

ANSWER ANY TWO QUESTIONS:

20. a) Find the conjunctive normal form and disjunctive normal form of $p \leftrightarrow(\neg p \vee \neg q)$ using the laws of algebraic propositions.
b) If $\left(L_{1}, \leq\right)$ and $\left(L_{2}, \leq\right)$ are distributive lattices, then prove that (L, \leq), where $L=L_{1} \times L_{2}$ is a distributive lattice.
(10+10)
21. a) State and prove De Morgan's law for a Boolean algebra. Also show the uniqueness of complement in a Boolean algebra.
b) Draw the transition table and transition Diagram for FSA, $M=\left\{I, S, A, s_{0}, f\right\}$,
where $I=\{0,1,2,3,4,5,6,7,8,9\}, S=\left\{s_{0}, s_{1}, s_{2}\right\}, A=\left\{s_{0}\right\}, a \in\{0,3,6,9\}$, $\mathrm{b} \in\{1,4,7\}, c \in\{2,5,8\}$, next state function defined by $f\left(s_{0}, a\right)=s_{0}$, $f\left(s_{0}, b\right)=s_{1}, f\left(s_{0}, c\right)=s_{2}, f\left(s_{1}, a\right)=s_{1}, \quad f\left(s_{1}, b\right)=s_{2}, f\left(s_{1}, c\right)=s_{0}$, $f\left(s_{2}, a\right)=s_{2}, f\left(s_{2}, b\right)=s_{0}, f\left(s_{2}, c\right)=s_{1}$. Does this automaton accept 672 and 7348 ?
22. a) Find the prime implicants and minimal sum of product form for the expression $E(x, y, z)=x y z+x^{\prime} z^{\prime}+x y z^{\prime}+x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}$ by consensus method.
b) Determine the language accepted by the automaton shown in the transition diagram:

hachachacha

