STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2019–20 & thereafter)

SUBJECT CODE : 19MT/MC/CA65 B. Sc. DEGREE EXAMINATION, APRIL 2022 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE	:	MAJOR CORE
PAPER	:	PRINCIPLES OF COMPLEX ANALYSIS
TIME	:	3 HOURS

MAX. MARKS : 100

 $10 \times 2 = 20$

SECTION-A

ANSWER ANY TEN QUESTIONS:

- 1. Are analytic function differentiable? justify the converse?
- 2. Check whether the function $3x^2y + 2x^3 y^3 2y^2$ is harmonic or not.
- 3. Define conformal mapping for analytic function and check the transformation $w = \overline{z}$ is conformal.
- 4. Find the critical point of the function $z + \frac{1}{z}$.
- 5. Obtain the Maclaurin series for cos z.
- 6. Compare Taylor's and Laurent's series.
- 7. Classify the singularity of the function $f(z) = (z i)\sin\left(\frac{1}{z+2i}\right)$ and classify for them.
- 8. Write down Cauchy's inequality for analytic functions?
- 9. Find the fixed points of the transformations of $\frac{z+1}{1-z}$.
- 10. State and prove fundamental theorem of algebra.
- 11. Determine the zeros and poles of the analytic function $\frac{(z+1)^2(iz+2)^3}{z+7}$
- 12. Evaluate $\int_C \frac{dz}{z^2+4}$, where C is |z-i| = 2.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

- 13. Show that $u = \log \sqrt{x^2 + y^2}$ is harmonic and determine its conjugate and hence find the corresponding analytic function f(z).
- 14. Find the bilinear transformation that maps

 $z_1 = -i, z_2 = 0, z_3 = i$ into $w_1 = -1, w_2 = i, w_3 = 1$.

15. Discuss the applications of $w = e^z$ in upper half of the complex plane and check the mapping is conformal.

16. Find the series expansion using Taylors theorem for $\frac{z^2-1}{(z+2)(z+3)}$, |z| < 2.

 $5 \times 8 = 40$

 $2 \times 20 = 40$

- 17. Prove that $f'(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)d\zeta}{(\zeta-z)^2}$, where f(z) is analytic function inside and on a simple closed curve C with z as any point inside C.
- 18. Evaluate $\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$.

19. State and prove Rouche theorem and find the residue of $\int_C \frac{3z-4}{z(z-1)}$, where C: |z| = 2.

SECTION-C

ANSWER ANY TWO QUESTIONS:

20. a) State and prove the necessary and sufficient condition for a given function to be analytic in a given region R.

b) Prove that
$$Log(1-i) = \frac{1}{2}In \ 2 - \frac{\pi}{4}i.$$
 (12+8)

- 21. a) State and prove Cauchy Goursat Theorem.
 - b) If $f(z) = \frac{z+4}{(z+3)(z-1)^2}$ find Laurent's series expansion in the region (i) 0 < |z-1| < 4 (ii) |z-1| > 4. (12+8)

22. a) State and prove Cauchy Integral formula and find $\int_C \frac{e^{2z}dz}{(z-1)^4}$, where C is $|z| = \frac{3}{2}$. b) Prove that $\int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx = \frac{5\pi}{12}$. (12+8)