STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086 (For candidates admitted from the academic year 2019 & thereafter)

SUBJECT CODE: 19CH/ME/CC 45 B.Sc. DEGREE EXAMINATION, APRIL 2022 BRANCH IV – CHEMISTRY SIXTH SEMESTER

COURSE: MAJOR ELECTIVETITLE OF PAPER: COMPUTERS IN CHEMISTRYTIME: 3 HOURS

MAX. MARKS : 100

SECTION –A

Answer all the questions

(30 x 1 = 30 Marks)

I. Choose the correct answers:

- 1. In MS word _______ is used for quick access to commonly used commands and tools.
 - a) status bar b) tool bar c) title bar d) menu bar
- 3. To copy a selected text ______ a) Ctrl + X b) Ctrl + V c) Ctrl + C d) Ctrl + Z
- 4. To define a variable in Mathcad ______ is used.
 a) Shift+.
 b) Ctrl+.
 c) Ctrl+;
 d) Shift+;
- 5. A cell is in the fifth column and fifth row of the spreadsheet. It is defined as a) D6 b) F4 c) E5 d) B6
- 6. What type of chart is useful for comparing values over categories?a) pie chart b) line chart c) scatter chart d) column chart
- 7. To enter the range of variables in Mathcad _____ is operated a) Ctrl + ; b) ; c) Ctrl + : d) :
- 8. The chemical analysis window in chemdraw gives ______ of a molecule a) dipole moment b) m/e c) polarizability d) boiling point
- 9. To insert matrix the short cut key is _____ a) Ctrl + M b) Ctrl + \langle c) Ctrl + d) Ctrl + -
- 10. CHEMDB is a _____ online source a) spectral database b) chemical database c) XRD database d) drug designing

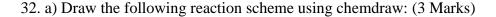
121

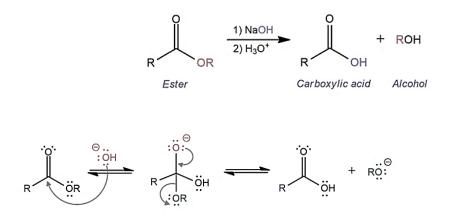
II. Fill in the blanks :

11. The dipole moment of 3-chlorocyclohex-1-ene is _____ 12. The 2nd derivative of $y = log(x^2 + 1)$ is _____ NH_2 CI 13. The IUPAC name of HO¹¹¹¹¹ 14. The O-H bond length in ethanol is 15. A Excel file is called a _ 16. Ctrl + R is used 17. Functions in MS Excel must begin with ____ 18. The applied magnetic field 107.85 G is _____ T 19. Convert 35.85 radians to degrees 20. The equation of line in a graph using excel is found from _____ Match the following: A. MS Excel - Home tab 21. Query tool 22. Symbolics **B**. F4 23. Conditional formatting C. Reaction map 24. Bond angles D. Mathcad 25. Repeat last action E. Analyse IV. Answer in one or two lines: 26. What is place holder? 27. What is MOPAC? 28. How to edit the active cell ?

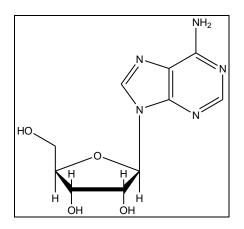
29. How to obtain the chemical properties from chemdraw?

SECTION -B


V. Answer any FIVE of the following:


31. The following results were obtained for the analysis of Magnesium in a sample Volumetrically. 20.3, 20.4, 20.3, 20.4, 20.4, 20.2 and 20.4. Evaluate the following using MSEXCEL: Mean, Deviation, Absolute error, Standard deviation, Variance

III.


$(5 \times 6 = 30 \text{ Marks})$

^{30.} What is CAS registry?

b) Using the template in chemdraw, draw the following structure: (3 Marks)

33. a) Plot a graph on Atomic number Vs Ionisation Energy of 3d series of transition metals. (Mathcad) (3 Marks)

(
At. No.	21	22	23	24	25	26	27	28	29	30
IE kJ/mol	631	658	650	653	717	759	758	737	745	906

b) 1 mol of ideal gas at 300 K is compressed isothermally under the external pressure of 200 atm. Calculate W if the initial and final pressure of the gas is 2 atm and 100 atm. Ideal gas Equation : V1=nRT/p1 ; V2=nRT/p2; W= p(V2-V1) (Mathcad) (3 Marks) n = 1 mol; R = 8.2057x10⁻⁵atm m³ mol⁻¹ K⁻¹; p1 = 2 atm ; p2 = 100 atm ; T = 300K

34. a) Determine the % of C,H and O for the following compounds using chemdraw

(3 Marks)

(i) Acetaldehyde (ii) 3-Methyloxiran-2-ol (iii) Methylbutyrate

b) From the above data plot a 3D bar graph of Compounds vs % of C,H and O using MS Excel sheet (3 Marks)

- 35. Determine the following parameters for (*1R*)-3-chlorocyclopentanol (2+1+1+1+1 Marks)
 (i) Bond distances of C-Cl, C-O and O-H (ii) Dihedral angles of Cl-C-C-H and O-C-C-H
 (iii) Non-bond distances of O,H and Cl,H (iv) Minimize energy of the molecule
 - (v) Solvent accessible surface the molecule.
- 36. What is molinspiration software? Explain its applications ?
- 37. a) Determine the eigenvalues, eigenvectors and determinants for the given matrix.

(Mathcad) (3 Marks)

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

b) An organic compound has been prepared by different methods. The actual and theoretical yield is given. Calculate the percentage yield and plot a pie chart.

(MS Excel) (3 Marks)

Methods	Actual yield(g)	Theoretical yield(g)
1	2.8	5
2	4.62	7.5
3	4.25	5
4	8.15	10
5	2.82	4

Formula : Percentage yield = $\frac{Actual yield}{Theoretical yield} * 100$

SECTION- C

38. a) In the experiment of study of kinetics of acid hydrolysis of methyl acetate the following result were obtained. The initial concentration in titration value a = 28.4 cm³. It was found that the at infinite time the reading was found to be 54.8cm³. Find the mean K. (MS Excel) (6 Marks)

t (minutes)	x (cm ³)	а-х	$k = \frac{2.303}{t} \log \frac{a}{a-x}$
0	26.4		
10	26.9		
20	27.3		
30	27.7		
40	28.1		
50	28.5		
60	28.3		
70	28.6		

- b) Find out the chemical properties of chloroacetone, N,N-dimethylformamide and lactic acid using chemdraw (3 x 2 = 6 Marks)
- c) The wave function is given by $\psi = A \operatorname{Sin} [n\pi x/a]$, where $A = 1/\sqrt{2}$ and a = 1 nm. For different values of x [in nm] = 0, 0.1, 0.2 -----, 0.8, 0.9, 1.0. Plot a graph of ψ verses x and ψ^2 verses x. (Mathcad) (8 Marks)
- 39. a) Calculate the relative populations including the degeneracy, of the rotational energy levels of a diatomic molecule. For the J values from 0 to 15. The rotational constant is B $= 5 \text{ cm}^{-1}$.

Formula:
$$\frac{N_J}{N_o} = (2J + 1) \exp\left(\frac{-BJ(J+1)hc}{kT}\right)$$

Where, $h = 6.626 \times 10^{-34}$ Js; $c=3x10^{10}$ cm/s; $k=1.381x10^{-23}$ JK-1; T = 300K (MS Excel)
(6 Marks)b) Evaluate the following : (Mathcad)(3 x 2 = 6 Marks)

(i)
$$\int \frac{e^{x}}{1+e^{2\cdot x}} dx$$
 (ii)
$$\int_{0}^{\frac{\pi}{2}} \sin(x) \cdot (4 \cdot \cos(x)) \cdot e^{2 \cdot \cos(x) + 1} dx$$

(iii)
$$\int \sqrt{x} \cdot \left(x^2 + 1\right) \cdot \left[(2) \cdot \sqrt[4]{x} + \frac{1}{\sqrt{x}}\right] dx$$

c) Plot a graph on Maxwell's Distribution of velocities at two different temperatures at 27°C and 227°C for Nitrogen molecule representing X axis as Velocity (c) and Y axis as Probable velocity (p) by using the below given data (Mathcad) (8 marks)

c x 10 ⁻² (m/s)	0	1	2	2.5	3	4	5	6	7	8	9	10	11	12
Probable	0	2.84	9.6	13.2	16.3	19.6	18.5	14.3	9.4	5.3	2.6	1.1	0.41	0.13
velocity p(c) x 10 ⁻⁴														

c x 10 ⁻² (m/s)	0	1	2	3	4	5	6	8	10	12	14
Probable velocity p(c) x 10 ⁻⁴	0	1.35	4.88	9.27	13.02	15.02	14.94	10.34	4.81	1.57	0.37

40. a) What is KEGG LIGAND database ? Explain its applications. (10 Marks)

 b) Phosphorescence emission of Acetone-d6 (0.05M) in Acetonitrile at 20°C was measured at 450 nm. Calculate the rate constant for the emission and also calculate the average life time of triplet state of acetone by plotting a graph on log I Vs time (μ sec) from the following data.

time (10 ⁻⁶ sec)	20	32	40	60	80	100	120	140
Intensity (I)	5.5	4.6	4.0	2.9	2.1	1.5	1.05	0.75

Obtain slope from the graph and substitute in $k = -slope \times 2.303$ to find the rate constant. To obtain Average life of triplet state take the reciprocal of k. (Mathcad) (6 Marks)

c) Solve the following equations using matrix

(4 Marks)

x + y - z = -32x - 3y + 4z = 23-3x + y - 2z = -15
