STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600086

(For candidates admitted from the academic year 2019 \& thereafter)

SUBJECT CODE: 19CH/ME/CC 45

B.Sc. DEGREE EXAMINATION, APRIL 2022
 BRANCH IV - CHEMISTRY
 SIXTH SEMESTER

COURSE : MAJOR ELECTIVE
 TITLE OF PAPER : COMPUTERS IN CHEMISTRY TIME

MAX. MARKS : 100

SECTION -A

Answer all the questions

(30 x $1=30$ Marks)
I. Choose the correct answers:

1. In MS word \qquad is used for quick access to commonly used commands and tools.
a) status bar
b) tool bar
c) title bar
d) menu bar
2. $\mathrm{Ctrl}+$ Right Arrow is used to move the cursor to \qquad
a) end of the line
b) end of the document
c) one word right
d) one paragraph down
3. To copy a selected text \qquad
a) $\mathrm{Ctrl}+\mathrm{X}$
b) $\mathrm{Ctrl}+\mathrm{V}$
c) $\mathrm{Ctrl}+\mathrm{C}$
d) $\mathrm{Ctrl}+\mathrm{Z}$
4. To define a variable in Mathcad \qquad is used.
a) Shift+.
b) $\mathrm{Ctrl}+$.
c) Ctrl+
d) Shift+;
5. A cell is in the fifth column and fifth row of the spreadsheet. It is defined as
a) D6
b) F4
c) E5
d) B6
6. What type of chart is useful for comparing values over categories?
a) pie chart
b) line chart
c) scatter chart
d) column chart
7. To enter the range of variables in Mathcad \qquad is operated
a) $\mathrm{Ctrl}+$;
b) ;
c) $\mathrm{Ctrl}+$:
d) :
8. The chemical analysis window in chemdraw gives \qquad of a molecule
a) dipole moment
b) m / e
c) polarizability
d) boiling point
9. To insert matrix the short cut key is \qquad
a) $\mathrm{Ctrl}+\mathrm{M}$
b) $\mathrm{Ctrl}+\mathrm{l}$
c) $\mathrm{Ctrl}+$
d) $\mathrm{Ctrl}+-$
10. CHEMDB is a \qquad online source
a) spectral database
b) chemical database
c) XRD database
d) drug designing

II. Fill in the blanks :

11. The dipole moment of 3-chlorocyclohex-1-ene is \qquad
12. The $2^{\text {nd }}$ derivative of $y=\log \left(x^{2}+1\right)$ is \qquad
13. The IUPAC name of
14. The O-H bond length

in ethanol is
15. A Excel file is called a \qquad
16. $\mathrm{Ctrl}+\mathrm{R}$ is used \qquad
17. Functions in MS Excel must begin with \qquad
18. The applied magnetic field 107.85 G is \qquad T
19. Convert 35.85 radians to \qquad degrees
20. The equation of line in a graph using excel is found from \qquad

III. Match the following:

21. Query tool
A. MS Excel - Home tab
22. Symbolics
B. F4
23. Conditional formatting
C. Reaction map
24. Bond angles
D. Mathcad
25. Repeat last action
E. Analyse

IV. Answer in one or two lines:

26. What is place holder?
27. What is MOPAC?
28. How to edit the active cell ?
29. How to obtain the chemical properties from chemdraw?
30. What is CAS registry?

SECTION -B

V. Answer any FIVE of the following:

31. The following results were obtained for the analysis of Magnesium in a sample Volumetrically. 20.3, 20.4, 20.3, 20.4, 20.4, 20.2 and 20.4. Evaluate the following using MSEXCEL: Mean, Deviation, Absolute error, Standard deviation, Variance
32. a) Draw the following reaction scheme using chemdraw: (3 Marks)

b) Using the template in chemdraw, draw the following structure: (3 Marks)

33. a) Plot a graph on Atomic number Vs Ionisation Energy of 3d series of transition metals.
(Mathcad)
(3 Marks)

At. No.	21	22	23	24	25	26	27	28	29	30
IE $\mathrm{kJ} / \mathrm{mol}$	631	658	650	653	717	759	758	737	745	906

b) 1 mol of ideal gas at 300 K is compressed isothermally under the external pressure of 200 atm . Calculate W if the initial and final pressure of the gas is 2 atm and 100 atm .
Ideal gas Equation : $\mathrm{V} 1=\mathrm{nRT} / \mathrm{p} 1 \quad ; \mathrm{V} 2=\mathrm{nRT} / \mathrm{p} 2 ; \quad \mathrm{W}=\mathrm{p}(\mathrm{V} 2-\mathrm{V} 1)$ (Mathcad) (3 Marks)

$$
\begin{aligned}
& \mathrm{n}=1 \mathrm{~mol} ; \mathrm{R}=8.2057 \times 10^{-5} \mathrm{~atm} \mathrm{~m}^{3} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} ; \\
& \mathrm{p} 1=2 \mathrm{~atm} ; \mathrm{p} 2=100 \mathrm{~atm} ; \mathrm{T}=300 \mathrm{~K}
\end{aligned}
$$

34. a) Determine the \% of C,H and O for the following compounds using chemdraw
(3 Marks)
(i) Acetaldehyde
(ii) 3-Methyloxiran-2-ol
(iii) Methylbutyrate
b) From the above data plot a 3D bar graph of Compounds vs \% of C, H and O using

MS Excel sheet (3 Marks)
35. Determine the following parameters for ($1 R$)-3-chlorocyclopentanol ($2+1+1+1+1$ Marks)
(i) Bond distances of $\mathrm{C}-\mathrm{Cl}, \mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ (ii) Dihedral angles of $\mathrm{Cl}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{H}$
(iii) Non-bond distances of O, H and Cl, H (iv) Minimize energy of the molecule
(v) Solvent accessible surface the molecule.
36. What is molinspiration software? Explain its applications ?
37. a) Determine the eigenvalues, eigenvectors and determinants for the given matrix.
(Mathcad) (3 Marks)

$$
A=\left(\begin{array}{ccc}
1 & 2 & 5 \\
2 & 3 & 1 \\
-1 & 1 & 1
\end{array}\right)
$$

b) An organic compound has been prepared by different methods. The actual and theoretical yield is given. Calculate the percentage yield and plot a pie chart.
(MS Excel) (3 Marks)

Methods	Actual yield(g)	Theoretical yield(g)
1	2.8	5
2	4.62	7.5
3	4.25	5
4	8.15	10
5	2.82	4

Formula : Percentage yield $=\frac{\text { Actual yield }}{\text { Theoretical yield }} * 100$

SECTION- C

38. a) In the experiment of study of kinetics of acid hydrolysis of methyl acetate the following result were obtained. The initial concentration in titration value $\mathrm{a}=28.4 \mathrm{~cm}^{3}$. It was found that the at infinite time the reading was found to be $54.8 \mathrm{~cm}^{3}$. Find the mean K. (MS Excel) (6 Marks)

t (minutes)	x $\left(\mathrm{~cm}^{3}\right)$	$a-x$	$k=\frac{2.303}{\frac{t}{t} \log \frac{a}{a-x}}$
$\min ^{-1}$			

b) Find out the chemical properties of chloroacetone, N, N-dimethylformamide and lactic acid using chemdraw
c) The wave function is given by $\psi=A \operatorname{Sin}[n \pi x / a]$, where $A=1 / \sqrt{2}$ and $a=1 n m$. For different values of $\mathrm{x}[\mathrm{in} \mathrm{nm}]=0,0.1,0.2------, 0.8,0.9,1.0$. Plot a graph of ψ verses x and ψ^{2} verses x. (Mathcad)
39. a) Calculate the relative populations including the degeneracy, of the rotational energy levels of a diatomic molecule. For the J values from 0 to 15 . The rotational constant is B $=5 \mathrm{~cm}^{-1}$.

$$
\text { Formula : } \frac{N_{J}}{N_{o}}=(2 J+1) \exp \left(\frac{-B J(J+1) h c}{k T}\right)
$$

Where, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js} ; \mathrm{c}=3 \times 10^{10} \mathrm{~cm} / \mathrm{s} ; \mathrm{k}=1.381 \times 10^{-23} \mathrm{JK}^{-1} ; \mathrm{T}=300 \mathrm{~K} \quad$ (MS Excel)
b) Evaluate the following : (Mathcad)
(i)
$\int \frac{e^{x}}{1+e^{2 \cdot x}} d x$
(ii) $\quad \int_{0}^{\frac{\pi}{2}} \sin (\mathrm{x}) \cdot(4 \cdot \cos (\mathrm{x})) \cdot \mathrm{e}^{2 \cdot \cos (\mathrm{x})+1} \mathrm{dx}$
(iii)

$$
\int \sqrt{x} \cdot\left(x^{2}+1\right) \cdot\left[(2) \cdot \sqrt[4]{x}+\frac{1}{\sqrt{x}}\right] d x
$$

c) Plot a graph on Maxwell's Distribution of velocities at two different temperatures at $27^{\circ} \mathrm{C}$ and $227^{\circ} \mathrm{C}$ for Nitrogen molecule representing X axis as Velocity (c) and Y axis as Probable velocity (p) by using the below given data (Mathcad)

$\mathbf{c x ~ x ~ 1 0}$ $(\mathbf{m} / \mathbf{s})$	0	1	2	2.5	3	4	5	6	7	8	9	10	11	12
Probable velocity $\mathbf{p (c)} \mathbf{x ~ 1 0}$	0	2.84	9.6	13.2	16.3	19.6	18.5	14.3	9.4	5.3	2.6	1.1	0.41	0.13

$\mathbf{c} \times 10^{-2}$ $(\mathbf{m} / \mathbf{s})$	0	1	2	3	4	5	6	8	10	12	14
Probable velocity $\mathbf{p (c) ~ x ~ 1 0 ~}$	0	1.35	4.88	9.27	13.02	15.02	14.94	10.34	4.81	1.57	0.37

40. a) What is KEGG LIGAND database ? Explain its applications. (10 Marks)
b) Phosphorescence emission of Acetone-d6 (0.05 M) in Acetonitrile at $20^{\circ} \mathrm{C}$ was measured at 450 nm . Calculate the rate constant for the emission and also calculate the average life time of triplet state of acetone by plotting a graph on log I Vs time ($\mu \mathrm{sec}$) from the following data.

time ($\left.\mathbf{1 0}^{-6} \mathbf{~ s e c}\right)$	20	32	40	60	80	100	120	140
Intensity (I)	5.5	4.6	4.0	2.9	2.1	1.5	1.05	0.75

Obtain slope from the graph and substitute in $\mathrm{k}=$-slope x 2.303 to find the rate constant. To obtain Average life of triplet state take the reciprocal of k. (Mathcad) (6 Marks)
c) Solve the following equations using matrix

$$
\begin{aligned}
& x+y-z=-3 \\
& 2 x-3 y+4 z=23 \\
& -3 x+y-2 z=-15
\end{aligned}
$$

