STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2019-10)

SUBJECT CODE: 19CH/AC/FC43

B.Sc. DEGREE EXAMINATION, APRIL 2022 BRANCH III - PHYSICS FOURTH SEMESTER

COURSE : ALLIED – CORE

PAPE: FIME		FUNDAMENTALS OF 3 HOURS	CHEMISTRY- II	MAX. MARKS: 100
Answe	er all the ques		ION – A	$(30 \times 1 = 30)$
I. Cho	oose the corre	ct answer:		
1.	potential of R	IUPAC convention , the ce HE (E_R) and LHE (E_L) as		
	a) $E_{cell} = E_{L}$ -	E_R b) $E_{cell} = E_R - E_L$	c) $E_{cell} = E_R + E_L$	d) $E_{cell} = E_R E_L$
2.		bidentate ligand is		d) evelete
	a) Cyano	b) py	c) aqua	d) oxalate
3.		of donor atoms in glycinate b) 3		d) 1
4.	Temperature a	at which standard reduction b) 273 K	n potential is measured	l is
5.	The number of a) 6.023x10 ²	of molecules in 3.4 g of H_2 S b) 6.023×10^{23}	c) 6.023x10 ²²	d) 6.023x10 ²⁵
6.	Reference ma a) Al ₂ O ₃	terial used in DSC is b) BaO	c) CaO	d) CeO ₂
7.		ouple that is commonly use b) Cr-Al		
8.		of polymer decomposition b) helium		sed as an inert atmosphere. d) hydrogen
Q	Example of a	primary cell is		
	a) Dry cell	b) Ni-Cd cell eight of Na ₂ CO ₃ is	c) Mercury cell	d) lead storage cell
20.	a) 53	b) 56 c) 1	106 d) 4	54

II Fill in the blanks:

11. The IUPAC name of [Pt(py) ₄][PtCl ₄] is				
12. Specific conductancewith dilution.				
13. Ostwald's dilution law is applicable forelectolytes.				
14. Structure of bipy is	/			
15. Expansion of DSC is				
16. Number of donor atoms in EDTA is				
17volume of 10 M HCl is diluted with water to prepare	e 2 L of 5 M HCl.			
18. Unit of molality is				
19. Normality and Molarity are related by the expression				
20. Shape of NiCO ₄ is				
III State whether true or false:				
21. Azido is a bidentate ligand.				
22. ΔG° and nFE $^{\circ}_{cell}$ are related as $\Delta G^{\circ} = nFE^{\circ}_{cell}$				
23. Electrochemical series is based on the standard reduction potential of NHE.				
24. Magnetic moment is expressed in Bohr Magnetron.				
25. Two types of DSC techniques are Heat flux and Power compensate	ed.			
IV Answer in a line or two:				
26. Give any one advantage of conductometric titration.				
27. Draw the structure of en.				
28. Define hydrate isomerism.				
29. How is cell constant determined?				
30. What is the function of a salt bridge?				
SECTION - B				
Answer any five questions:	$(5 \times 6 = 30)$			
31.a) Explain mole concept.				
b) Calculate the volume of 0.6 mole of SO_2 .	(4+2)			

- 32. Describe Hydrogen-Oxygen fuel cell.
- 33. Discuss the salient features of VBT
- 34.a) What is equivalent conductance?

b) Explain the importance of Nernst equation.

(2+4)

- 35. Describe the working of calomel electrode.
- 36.Explain the terms a) linkage isomerism b) magnetic moment c) ambidentate ligand (2+2+2)
- 37.a) Draw the thermogram of calcium oxalate and explain.
 - b) What is the principle of DTA? Draw a DTA plot.

SECTION - C

Answer any two questions:

 $(2 \times 20 = 40)$

- 31.a) State Kohlrausch's Law. Explain the varied applications of the law.
 - b) The values of Λ_m^{∞} for NH₄Cl, NaOH and NaCl at infinite dilution are respectively 129.8, 248.1 and 126.4 ohm⁻¹cm²mol⁻¹. Calculate Λ_m^{∞} of NH₄OH.
 - c) Illustrate the applications of electrochemical series.

(10+5+5)

- 32.a) Discuss the principle and instrumentation of TGA.
 - b) Explain the structural features and functions of Haemoglobin.
 - c) Describe the working of Lead storage battery.

(8+6+6)

- 40. a) Desribe geometrical isomerism in four coordinate complexes.
 - b) In accordance with VBT, explain the geometry of $[FeF_6]^{3-}$ (n=5) and $[NiCl_4]^{2-}$ (n=2).
 - c) What are conductometric titrations? Describe the titration of i) a strong acid with a strong base and ii) a weak acid with a weak base. (6+6+8)

