STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086 (FOR candidates admitted from the academic year 2019-2020 & thereafter) SUBJECT CODE : 19PH/MC/MP44 B.Sc. DEGREE EXAMINATION – APRIL 2022 BRANCH III – PHYSICS FOURTH SEMESTER

COURSE	:	MAJOR CORE
PAPER	:	MATHEMATICAL PHYSICS
TIME	:	3 HOURS

MAX. MARKS : 100

SECTION – A

ANSWER ALL QUESTIONS:

I CHOOSE THE CORRECT ANSWER: $(10 \times 1 = 10)$

	The angle between the vector $\vec{A} = \vec{j}$ and th a) 30° b) 0° If three vectors a , b, c are coplanar	e Z axis is c) 17°	d) 90°			
2.	a) $a x b x c = 0$ b) $a \cdot b x c = 0$	c) a x b . c =	= 0 d) a.b.c = 0			
3.	Given the vector $E = yz i + xz j + xy k$, it is a) solenoidal b) irrotational c) null	I	d) infinite			
4.	A particle moves so that its position vector	\vec{r} is given by \vec{r}	$\vec{r} = i\cos\omega t + j\sin\omega t$ where			
	ω is constant. If \vec{v} is the velocity of the particle, then $\vec{r} \cdot \vec{v}$ is equal to					
	a) <i>w</i> b) 0	c) r	d) <i>v</i>			
5.	For a surface $\phi(x,y,z)=c$, where 'c' is a constant, $\widehat{\nabla}\phi$ is					
	a) a null vector	b) unit vector				
	c) a vector parallel to the surface \rightarrow	· ·	-			
6.	Work done in moving the vector $\vec{r} = 3\vec{i} + 2\vec{i}$	j-5k if applied	d force is $F = 2i - j - k$ is			
	a) 1 b) 21	c) 9	d) none			
7.	Gauss's law in electrostatics in differential form is given by $E = \rho/c$					
	a) div $E = \rho/\varepsilon_0$ b) div $E = \rho$	c) E.ds= p/z_0	d) E.ds= ρ			
	where ρ is the charge density, E the electrostatic field and ε_0 the permittivity of free space.					
	*	ſ	1 0			

- 8. A necessary and sufficient condition that the integral $c \int A dr = 0$ for every closed curve C is that
 - a) div A = 0 b) curl A = 0 c) div $A \neq 0$ d) curl $A \neq 0$

....2

	er stokes theorem $\int_{s} \nabla x A.ds = \int A.dr$ a) $\int_{s} \nabla^{2} A.ds = \int A.dr$ c) Suct of a complex number an		$\int_{s} \nabla A.ds = \int A.dr$ $\int_{s} \nabla^{2} xAds = \int A.dr$		
a) imag	ginary b) real	c) complex	d) zero		
II FIL	L IN THE BLANKS:		(5 x 1 = 5)		
 11. k. (i + j) = 12. In an RCL circuit as t→∞ the transient component of current tends to 13. "Line integral is path independent" – this statement holds good for field. 14. Voltage drop across capacitance is 15. The argument of (5-3i) is 					
III ANS	WER BRIEFLY		(5 x 2 = 10)		
16. What is a conservative vector field? 17. Prove that $\overline{A} \cdot (\overline{A} \times \overline{C}) = 0$. 18. Write any two Maxwell's equation with its significance					

- 19. Show that acceleration a = v dv/dx
- 20. What is boundary value? Give example

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 21. An electric field is given as $E = 6y^2z i + 12xyz j + 6xy^2 k$. An incremental path is given by dl = -3 i + 5 j 2 k mm. Calculate the work done in moving a 2mC charge along the path if the location of the path is at p(0,2,5) is in Joule.
- 22. A particle moves along a curve whose parametric equations are $x = 3e^{-2t}$, y = 4 Sin 3t, z = 5 Cos 3t where 't' is the time. Find the magnitudes of the velocity and acceleration at t = 0.
- 23. Determine the divergence of F = 30 i + 2xy j + 5xz2 k at (1, 1, 0.2) and state the nature of the field.

....3

 $(5 \times 6 = 30)$

- 24. State Gauss' divergence theorem. b) Use the theorem to solve $\iint [A.ds]$ where $A = x^2 i + y^2 j + z^2 k$ taken over the cube of side one unit.
- 25. An RL circuit has a resistance of 10 ohms and inductance of 1.5 Henries, an applied emf of 9 volts and an initial current of 6 amps. Find (a) the current in the circuit at any time t and (b) its transient component.
- 26. A body weighing 64 lb is dropped from a height of 100 ft with an initial velocity of 10 ft/sec. If the limiting velocity is 128 ft/sec, Find expression for velocity and position at any time t.
- 27. Find the polar form of (1-i) and (1+3i)

SECTION – C ANSWER ANY THREE QUESTIONS:

(3x15=45)

28. a) Prove $\nabla r^n = n r^{n-2} r$

b) Calculate the force acting on an electron in a magnetic field of intensity 0.1 tesla directed along Z-axis when the electron has a velocity 10^4 ms⁻¹ along X-axis. Find its velocity also.

- 29. a) Show that $\vec{A} = (2xy + z^3)\vec{i} + x^2\vec{j} + 3xz^2\vec{k}$ is a conservative force field. Find the scalar potential.
 - b) Find the work done in moving a particle in this field from (1, 2, 3) to (-2, 4, 3)
- 30. a) A particle moves so that its position vector is given by $r = (\cos \omega t)i^{+} + (\sin \omega t)j^{+}$ where ω is a constant. Show that (i) v is perpendicular to r (ii) acceleration 'a' is directed towards the origin and has the magnitude to the distance from the origin.

b) If $F = \nabla \Phi$, then show that the work done in moving a particle from $P_1 = (x_1, y_1, z_1)$ in this field to another point $P_2 = (x_2, y_2, z_2)$ is independent of the path joining the point

- 31. a) Derive Gauss's law in electrostatics in differential formb) Obtain Laplace and Poisson's equation.
- 32. a) A spring for which $k = 50 \text{ Nm}^{-1}$ hangs in a vertical position with its upper end fixed. A mass of 5 kg is attached to the lower end. After coming to rest, the mass is pulled down 0.05m and released. Discuss the resulting motion of the mass, neglecting air-resistance.

b) Explain how polar form of complex numbers is useful in multiplication and division of complex numbers with example
