BRANCH III - PHYSICS

FOURTH SEMESTER

COURSE : MAJOR CORE
PAPER : MATHEMATICAL PHYSICS
TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A

ANSWER ALL QUESTIONS:

I CHOOSE THE CORRECT ANSWER:

1. The angle between the vector $\vec{A}=\vec{\jmath}$ and the Z axis is
a) 30°
b) 0°
c) 17°
d) 90°
2. If three vectors $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are coplanar
a) $\mathrm{axbxc}=0$
b) a.bxce0
c) $\mathrm{axb} . \mathrm{c}=0$
d) a.b.c $=0$
3. Given the vector $E=y z i+x z j+x y k$, it is
a) solenoidal
b) irrotational
c) null
d) infinite
4. A particle moves so that its position vector \vec{r} is given by $\vec{r}=\vec{i} \cos \omega t+\vec{j} \sin \omega t$ where ω is constant. If \vec{v} is the velocity of the particle, then $\vec{r} \cdot \vec{v}$ is equal to
a) ω
b) 0
c) r
d) v
5. For a surface $\phi(x, y, z)=c$, where ' c ' is a constant, $\hat{\nabla} \phi$ is
a) a null vector
b) unit vector
c) a vector parallel to the surface
d) a vector perpendicular to the surface
6. Work done in moving the vector $r=3 \vec{i}+2 \vec{j}-5 \vec{k}$ if applied force is $F=2 \vec{i}-\vec{j}-\vec{k}$ is
a) 1
b) 21
c) 9
d) none
7. Gauss's law in electrostatics in differential form is given by
a) $\operatorname{div} E=\rho / \varepsilon_{0}$
b) $\operatorname{div} \mathrm{E}=\rho$
c) $\mathrm{E} . \mathrm{ds}=\rho / \varepsilon_{0}$
d) E.ds $=\rho$
where ${ }^{\rho}$ is the charge density, E the electrostatic field and ${ }^{\varepsilon_{0}}$ the permittivity of free space.
8. A necessary and sufficient condition that the integral ${ }_{c} \int A \cdot d r=0$ for every closed curve C is that
a) $\operatorname{div} \mathrm{A}=0$
b) $\operatorname{curl} \mathrm{A}=0$
c) $\operatorname{div} \mathrm{A} \neq 0$
d) $\operatorname{curl} \mathrm{A} \neq 0$
9. As per stokes theorem
a) $\quad \int_{s} \nabla x A \cdot d s=\int A \cdot d r$
a)
c) $\quad \int_{s} \nabla^{2} A \cdot d s=\int A \cdot d r$
$\begin{array}{ll}\text { b) } & \int_{s} \nabla A \cdot d s=\int A \cdot d r \\ \text { d) } \quad & \int_{s} \nabla^{2} x A d s=\int A \cdot d r\end{array}$
10. Product of a complex number and its conjugate is
a) imaginary
b) real
c) complex
d) zero

II FILL IN THE BLANKS:
11. $\mathrm{k} \cdot(\mathrm{i}+\mathrm{j})=$ \qquad
12. In an RCL circuit as $t \rightarrow \infty$ the transient component of current tends to
\qquad
13. "Line integral is path independent" - this statement holds good for \qquad field.
14. Voltage drop across capacitance is \qquad
15. The argument of $(5-3 i)$ is \qquad
III ANSWER BRIEFLY
16. What is a conservative vector field?
17. Prove that $\bar{A} \cdot(\bar{A} \times \bar{C})=0$.
18. Write any two Maxwell's equation with its significance
19. Show that acceleration $\mathrm{a}=\mathrm{vdv} / \mathrm{dx}$
20. What is boundary value? Give example

SECTION - B

ANSWER ANY FIVE QUESTIONS:

21. An electric field is given as $E=6 y^{2} z i+12 x y z j+6 x y^{2} k$. An incremental path is given by $\mathrm{dl}=-3 \mathrm{i}+5 \mathrm{j}-2 \mathrm{kmm}$. Calculate the work done in moving a 2 mC charge along the path if the location of the path is at $\mathrm{p}(0,2,5)$ is in Joule.
22. A particle moves along a curve whose parametric equations are $x=3 e^{-2 t}$, $y=4 \operatorname{Sin} 3 t, z=5 \operatorname{Cos} 3 t$ where ' t ' is the time. Find the magnitudes of the velocity and acceleration at $\mathrm{t}=0$.
23. Determine the divergence of $\mathrm{F}=30 \mathrm{i}+2 \mathrm{xyj}+5 \mathrm{xz} 2 \mathrm{k}$ at $(1,1,-0.2)$ and state the nature of the field.
24. State Gauss' divergence theorem. b) Use the theorem to solve \iint 【A.ds】where $A=x^{2}$ $i+y^{2} j+z^{2} k$ taken over the cube of side one unit.
25. An RL circuit has a resistance of 10 ohms and inductance of 1.5 Henries, an applied emf of 9 volts and an initial current of 6 amps . Find (a) the current in the circuit at any time t and (b) its transient component.
26. A body weighing 64 lb is dropped from a height of 100 ft with an initial velocity of 10 $\mathrm{ft} / \mathrm{sec}$. If the limiting velocity is $128 \mathrm{ft} / \mathrm{sec}$, Find expression for velocity and position at any time t .
27. Find the polar form of (1-i) and (1+3i)

SECTION - C

ANSWER ANY THREE QUESTIONS:

($3 \times 15=45$)
28.
a) Prove $\nabla r^{n}=n r^{n-2} \mathbf{r}$
b) Calculate the force acting on an electron in a magnetic field of intensity 0.1 tesla directed along Z -axis when the electron has a velocity $10^{4} \mathrm{~ms}^{-1}$ along X -axis. Find its velocity also.
29. a) Show that $\vec{A}=\left(2 x y+z^{3}\right) \dot{i}+x^{2} \vec{j}+3 x z^{2} \vec{k}$ is a conservative force field. Find the scalar potential.
b) Find the work done in moving a particle in this field from $(1,2,3)$ to $(-2,4,3)$
30. a) A particle moves so that its position vector is given by $r=(\cos \omega t) i^{\wedge}+(\sin \omega t) j^{\wedge}$ where ω is a constant. Show that (i) v is perpendicular to r (ii) acceleration ' a ' is directed towards the origin and has the magnitude to the distance from the origin. b) If $\mathrm{F}=\nabla \Phi$, then show that the work done in moving a particle from $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ in this field to another point $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ is independent of the path joining the point
31. a) Derive Gauss's law in electrostatics in differential form
b) Obtain Laplace and Poisson's equation.
32. a) A spring for which $\mathrm{k}=50 \mathrm{Nm}^{-1}$ hangs in a vertical position with its upper end fixed. A mass of 5 kg is attached to the lower end. After coming to rest, the mass is pulled down 0.05 m and released. Discuss the resulting motion of the mass, neglecting air-resistance.
b) Explain how polar form of complex numbers is useful in multiplication and division of complex numbers with example

