STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086.

(For candidates admitted during the academic year 2019-2020)

SUBJECT CODE: 19PH/MC/AN64

B.Sc. DEGREE EXAMINATION APRIL 2022 BRANCH III - PHYSICS SIXTH SEMESTER

COURSE	•	MAJOR – CORE
COUNDE	•	MIAJON - CONE

PAPER: ATOMIC AND NUCLEAR PHYSICS

TIME

	SECTI	ION – A			
	VER ALL QUESTIONS: CHOOSE THE CORRECT ANSWER		25 MARKS (10 X 1 = 10)		
1.	When orange light falls on photosensit	-	_		
	The velocity of ejected electrons will be	e more when the su	rface is strike by		
	a) red light b) violet light	c) green ligh	nt d) blue light		
2.	The current in the photo electric cell				
	a) increases on increasing the inte				
	b) increases on increasing the freq				
	c) decreases on increasing the free				
	d) remains unchanged on increasing	ng the intensity of in	ncident light		
3.	The Bhor magneton is equal to	2 .	2		
	,	c) $e \hbar^2/2m$	d) $2m / e \hbar^2$		
4.	In a shell structure of atom, the maxim				
	corresponding to principal quantum nu	_			
_	a) 2 b) n^2	c) 2n ²	d) n		
5.	5. The masses of neutron and proton are respectively 1.0087 and 1.0073 amu. If a				
	neutron and proton combine together to	o form a nucleus of	mass 4.0015 amu, the		
	binding energy of nucleus will be	\ 140 N. V.	1) 140 34 37		
_		c) 14.2 MeV	d) 142 MeV		
6.	In the following nuclear reaction, X sta				
	a) $_{+1}e^{0}$ b) $_{0}n^{1}$	c) $-1e^{0}$	d) $_{1}p^{1}$		
7.	Baryon number of $p + \pi^0 + \pi^+$				
	a) zero b) + 1	c) -1	d) +1or zero		
8.	Which one is not a fundamental particl				
	a) proton b) meson	c) neutrino	d) α-particle		
9.	The fundamental postulates of vector a				
			d spinning of electron		
			n of quantized orbit is $nh/2\pi$		
10	. Splitting of spectral lines due to electri				
	a) Zeeman b) Stark	c) electric	d) Paschen effect		
			(5.1.5)		
11	FILL IN THE BLANKS	:-	(5x1=5)		
	. The empirical formula for nuclear radio	JS 1S			
12	. Moseley's law is The weakest of the four types of funda	mental interactions	is interaction.		
13	. The weakest of the four types of fullda	mentar micraemons	is interaction.		

14.	14. Four factor formula for a neutron cycle is	
15.	15. The minimum kinetic energy of the incident particle which will initiat	te an endoergic
	reaction is called .	

ANSWER BRIEFLY

- 16. What is meant by the term 'Internal conversion'?
- 17. State Paschen back effect.
- 18. What is a Nuclear magnetic bottle? Explain.
- 19. Give the characteristics of neutrino and antineutrino.
- 20. Distinguish between continuous and characteristic x-rays.

SECTION B

ANSWER ANY FIVE QUESTIONS

(5x6=30)

(5x2=10)

- 21. Define Nuclear fusion. Write a brief note on sources of stellar energy.
- 22. Compute the field gradient of a 0.4 m long Stern-Gerlach experiment that would produce a 2 mm separation at the end of the magnet between two components of beam of silver atoms emanating from an oven of 960° C.
- 23. Why Compton Effect cannot be observed with visible light? An X-ray photon is found to have doubled its wavelength on being scattered by 90°. Find the energy and wavelength of incident photon.
- 24. State the radioactive law of disintegration. A 10 gm of radioactive substance is reduced by 2.5 mg in 6 years through alpha decay. Evaluate half life and mean life time of the substance.
- 25. Write a short note on quark model and write the quark model of the proton, antiproton, neutron and antineutron. What is the necessity to have coloured quarks.
- 26. The wavelength of the photoelectric threshold of a metal is 2300 Å. Determine (i) the work function in eV, and (ii) the maximum kinetic energy (in eV) of the photoelectrons ejected by UV light of wavelength 1800 Å.
- 27. Calculate the threshold energy required to initiate the reaction Na^{23} (n, α) F^{20} (m_{Na}= 22.9898 u, m_n = 1.00866 u, m_{\alpha} = 4.0040 u, m_F = 19.9999 u)

SECTION - C

Answer any THREE questions

(3x15=45)

- 28. Describe the construction of Aston's mass spectrograph with necessary theory and explain how it can be used for the detection of isotopes.
- 29. Give the origin and characteristics of Beta rays discrete and continuous spectrum. Outline neutrino theory of Beta decay.
- 30. Describe the construction and working of a nuclear reactor. When is the reactor said to be critical?
- 31. Discuss the classification of elementary particles. Explain the different quantum numbers associated with elementary particles.
- 32. What is Zeeman effect? Describe the experimental arrangement for studying the Zeeman effect. Obtain an expression for Zeeman shift.
