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Abstract
Error Correction is important for most next-generation sequencing applications because highly accurate sequenced
reads will likely lead to higher quality results.Many techniques for error correction of sequencing data from next-gen
platforms have been developed in the recent years. However, compared with the fast development of sequencing
technologies, there is a lack of standardized evaluation procedure for different error-correction methods, making
it difficult to assess their relative merits and demerits. In this article, we provide a comprehensive review of many
error-correction methods, and establish a common set of benchmark data and evaluation criteria to provide a com-
parative assessment.We present experimental results on quality, run-time, memory usage and scalability of several
error-correction methods. Apart from providing explicit recommendations useful to practitioners, the review
serves to identify the current state of the art and promising directions for future research. Availability: All
error-correction programs used in this article are downloaded from hosting websites.The evaluation tool kit is pub-
licly available at: http://aluru-sun.ece.iastate.edu/doku.php?id¼ecr.
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INTRODUCTION
Propelled by ever increasing throughput and

decreasing costs, next-generation sequencing

(NGS) is continually displacing traditional Sanger

approaches in many applications such as resequen-

cing, de novo sequencing, metagenomics and gene

expression analysis. Many NGS technologies have

been developed, including systems currently in

wide use such as the Illumina Genome Analyzer

and HiSeq platforms, as well as newer offerings

from companies such as Ion Torrent and

Pacific Biosciences [1]. The properties of major

NGS platforms—454 LifeSciences [2], Illumina [3],

Applied Biosystems SOLiD [4], Helicos

HeliScope [5], Complete Genomics [6], Pacific

BioSciences and Ion Torrent—are summarized in

Table 1. These properties are current as of this

writing (February 2012) and are expected to

change frequently.

The growing prominence of NGS platforms and

the myriad applications enabled by them have

spurred significant research efforts in the develop-

ment of bioinformatics methods for enabling such

applications. Although all NGS experiments ultim-

ately result in DNA sequence data, bioinformatics

methods for analyzing the data can be very different

based on the target application. For most of these

methods, the quality of the results, and sometimes

run-time performance or memory usage, can be im-

proved by preprocessing the NGS data set to im-

prove data quality. While this can be done by

simple approaches such as trimming based on quality

scores etc., which invariably result in loss of infor-

mation, a class of sophisticated methods emerged that
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detect and correct errors in NGS sequence data.

There is growing interest in addressing NGS error

correction, as evidenced by a million dollar challenge

from Ion Torrent [7].

There are mainly three types of biases that lead to

errors in NGS data—systematic bias, coverage bias

and batch effects, depending on sequencing plat-

form, genome content and experimental variability

[8]. Some of these errors are inherent in the starting

sequencing library as a result of PCR conditions,

enrichment and sequence library preparation meth-

ods. In this manuscript, we focus on sequencing

errors, which include substitutions, insertions and

deletions. In addition, sequencers may output N to

indicate the confirmed presence of a nucleotide that

cannot be called accurately. While substitution errors

are dominant in some platforms such as Illumina, in

others such as 454 and Ion Torrent, homopolymer

and carry-forward errors manifested as insertions and

deletions are abundant. Due to the ubiquitous use of

Illumina sequencing platforms, most error-correction

algorithms so far have targeted substitution errors

[9–21]. There is an increasing need to identify and

correct insertion and deletion errors owing to the

emergence of new platforms such as Ion Torrent;

so far, only a few methods [10, 16, 17] can model

such errors.

This article provides a review of error-correction

algorithms for NGS data and their comparative

evaluation. While the algorithms are documented

in individual research papers, each work uses poten-

tially different data sets for experimental evaluation,

rendering cross-comparisons difficult. In addition,

different papers use different metrics for evaluation,

which clouds proper interpretation of results of mul-

tiple methods. A key contribution of this work is to

establish a common set of benchmarks and evaluation

metrics, and experimental evaluation of error-correc-

tion programs on these for providing clear informa-

tion and explicit guidance for the practitioner. The

programs are assessed on multiple dimensions includ-

ing quality, run-time, memory usage, ability to scale

and ability to deal with nuances of real data such as

quality scores and ambiguous nucleotides.

OVERVIEWOF ERROR-
CORRECTIONMETHODS
Error-correction methods designed so far have

mainly targeted haplotype genome sequencing. In

this setting, error correction with respect to a specific

genomic position can be achieved by laying out all

the reads covering the position, and examining the

base in that specific position from all these reads. As

errors are infrequent and random, reads that contain

an error in a specific position can be corrected using

the majority of the reads that have this base correctly.

This general idea has been implemented in all error-

correction algorithms, albeit indirectly. As the source

genome is unknown, the reads from the same gen-

omic location are inferred relying on the assumption

that they typically share subreads of a fixed length,

such as k-mers. Some methods [13, 17] further derive

multiple sequence alignment (MSA) of reads that

share common k-mers and seek corrections relying

on the MSA, while others [9–12, 14–16, 18–21]

correct errors at the level of k-mers or variable

length subreads. In both cases, genomic repeats and

Table 1: Characteristics of major NGS platforms as of February 2012

Company Platform Read length
(bp)

Throughput &
time per run

Technique Dominant error type

Illumina HiSeq 2000a 3650100 105^600Gb 2^11 days Reversible terminator Substitution
Applied Biosystems 5500 SOLiDTM Systemb 356 075 7^9Gb/day Sequencing by ligation ^
Complete Genomics 35 ^ Ligation based ^
Helicos BioSciences HeliScope SMSc 25^55 21^35Gb ^ Single molecule sequencing Insertion Deletion
454 Life Sciences GS FLX Titanium XLþd

�1000 700Mb 23h Sequencing by synthesis Insertion Deletion
IonTorrent Ion PGM Sequencer 318e >200 >1Gb 2h Ion semiconductor sequencing Insertion Deletion
Pacific Biosciences PacBio RS 1k^10k ^ Single molecule sequencing Insertion Deletion

aHiSeq 2000: Performance and Specifications. http://www.illumina.com/systems/hiseq_2000/performance_specifications.ilmn (11February 2012, date
last accessed). b5500 SOLiDTM System: Specifications. http://media.invitrogen.com.edgesuite.net/solid/pdf/CO18235-5500-Series-Spec-Sheet-F2
.pdf (11 February 2012, date last accessed). ctSMSTM Performance. http://www.helicosbio.com/Technology/TrueSingleMoleculeSequencing/
tSMStradePerformance/tabid/151/Default.aspx (11 February 2012, date last accessed). dGS FLX Titanium XLþ. http://my454.com/products/gs-flx-
system/index.asp (11 February 2012, date last accessed). eIon Personal Genome MachineTM Sequencer: Performance. http://www.iontorrent.com/
technology-how-does-it-perform/ (11February 2012, date last accessed).
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non-uniform sampling of genome may lead to mul-

tiple equally likely correction choices that lead to

ambiguity in correction. We classify error-correction

methods into three types—k-spectrum based, suffix

tree/array-based and MSA-based methods.

k-spectrum-based
These methods work by decomposing the reads into

the set of all k-mers present in them, termed the

k-specturm [10]. In NGS data sets predominantly

containing substitution errors, k-mers within a small

Hamming distance from each other are likely to

belong to the same genomic location. By identifying

such a k-mer set, alignment is directly achieved with-

out resorting to MSA, and error correction can then

be applied by converting each constituent k-mer to

the consensus. Mis-correction can occur if a k-mer

set consists of elements sampled from different gen-

omic locations. However, with a reasonably chosen

k value, the overall correction is expected to be

satisfactory.

The idea of correcting errors using k-spectrum

was first proposed in [10, 22]. In a given data set, a

k-mer occurring at least M times is termed solid, and

is termed insolid otherwise. Reads containing insolid
k-mers are converted to solid ones with a minimum

number of edit operations so that they contain only

solid k-mers post-correction. A dynamic program-

ming solution for this, and a heuristic for scaling to

larger data sets, is a built-in component in the short

read assembler by Chaisson etal. [10]. A similar idea is

also used as a stand-alone error-correction compo-

nent in the SOAPdenovo assembler [23].

Under the same framework, Quake [14] in add-

ition incorporates nucleotide specific miscall rates

and works as follows: (i) identify solid and insolid

k-mers—(a) calculate the weight of a k-mer as the

weighted sum of all its instances, each given byQk�1
i¼0 pi, where pi is the probability that the i-th

base is correctly recorded, specified by its quality

score; (b) model the weight histogram of solid

k-mers as a mixture of Gaussian and Zeta distribu-

tions, and insolid k-mers as Gamma distribution, then

choose a cut-off to differentiate them. (ii) Convert

each read r to be free of insolid k-mers—(a) heuris-

tically locate erroneous region in r using insolid

k-mers. If some insolid k-mers cover the 30-end,

trimming is applied; (b) greedily correct bases with

low quality scores until all k-mers are solid, if ap-

plicable. Otherwise, r is considered not fixable.

Quake was applied only to simulated Illumina

reads, which were generated with simplification

that sequencing errors introduced conform to the

probabilities specified by quality values, which is

not necessarily accurate in real data sets [24].

Reptile [21] also incorporates quality scores and it

further makes use of k-mer context to simultaneously

improve specificity and sensitivity. Each read is

decomposed into a sequence of overlapping sub-

strings, termed tiles, which are corrected sequentially

from 50 to 30 direction. Since errors are non-

uniformly distributed in each read, sometimes it is

necessary to explore alternative decomposition of a

read in order to limit the maximum number of errors

in a tile. Each tile consists of a sequence of (two in

current implementation) non-overlapping or over-

lapping k-mers. This captures k-mer context infor-

mation and helps in resolving ambiguities when a

k-mer aligns equally well to different genomic loca-

tions. Given a tile t and its observed frequency in the

data set, all other tiles that are similar to t but occur-

ring with significantly higher frequency than t are

considered as candidates to which t might be con-

verted. To identify these candidates, Reptile searches

a Hamming graph, where a node denotes a k-mer

and an edge connects two nodes with Hamming

distance �d. An efficient bucketing strategy was pro-

posed to replace the direction construction of such a

graph that can be memory demanding.

Hammer [25] extends the idea of Hamming graph

to use spaced seeds to provide higher sensitivity in

identifying clusters of similar k-mers. A consensus

k-mer is generated to denote the error free k-mer

for each cluster. This is equivalent to correct the

counting of k-mers in the data set [15, 19, 20].

Suffix tree/array based
Suffix tree/array-based error-correction methods

SHREC [18] and HiTEC [12] generalize the

k-mer-based approach by handling multiple k
values and the corresponding threshold M. The

major differences between them include (i) how M
is derived and (ii) how suffixes in the input are

stored. Suffix arrays are more space-efficient than

suffix trees, while permitting similar operations.

SHREC constructs a generalized suffix trie. For

each internal node u, the concatenation of edge

labels from the root to u spells a substring su that

occurs in the input, and the number of times su
occurs equals to the number of leaves of the subtree

rooted at u. The expected occurrence of su is assumed

to be an outcome of Bernoulli trials, and computed
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analytically. Then, if the observed occurrence of su is

smaller than a unit of variance, the last base of su is

considered as an error. In order to identify the po-

tential correction for su, the subtree rooted at u is

compared with the subtree rooted at v, where u
and v are siblings and sv is error free. If the two

subtrees are identical, then u can be merged to v
and relevant changes are made for all reads that

were previously leaves under u. Otherwise, there

might be more than one error in a read containing

su. Then, every read r under u is individually in-

spected. Multiple errors can be corrected by repeat-

ing the above procedure.

Built upon SHREC, Hybrid-SHREC [16] further

captures insertion/deletion errors. In accordance

with the above notation, if the last base of su is an

insertion, then in the suffix trie, u should be com-

pared with the siblings of the parent of u; on the

other hand, if a deletion occurs, u should be com-

pared with the children of its sibling. This extension

is able to capture up to one insertion/deletion error

in a read per given iteration.

HiTEC uses suffix array and is based on the fol-

lowing ideas: assume in read r, the substring r[i, iþ k]
contains exactly one sequencing error at base r[iþ k].
Meanwhile, if there exists a substring s such that

jsj ¼ kþ 1, s [0, k� 1]¼ r[i, iþ k�1], s[k] 6¼ r[iþ k]
and s occurs over M times in R, then s[k] is likely to

be the real base mis-recorded as r[iþ k]. In other

words, any erroneous base can be corrected by

HiTEC only if this base is preceded by an error

free k-mer. Thus, the goal is to derive proper

values of k and M so that a satisfactory error-correc-

tion result can be achieved. HiTEC chooses k to

minimize the total number of bases that cannot be

corrected and the bases that can be potentially

wrongly corrected. And similar to SHREC, M is

chosen empirically based on the expected and

observed k-mer occurrences.

MSAbased
Coral [17] identifies reads colocated on the unknown

reference genome by using k-mers as seeds. First, a

hash table is created recording all the reads to which

each k-mer belongs. Second, each read r is taken as

the reference, then any read r’ that shares at least one

k-mer with r is identified and aligned with r using

Needleman–Wunsch algorithm. A consensus se-

quence is created after alignment, which is taken as

the new reference to be aligned with the remaining

reads. This approach can be applied to both 454

reads and Illumina reads by controlling alignment

penalties for edit operations. Insertion and deletion

are considered in the former case, whereas in the

latter case, only substitution is allowed. Finally,

after MSA is generated, corrections are applied if

the number of reads involved in the MSA is neither

too large nor too small, and the largest edit distance

between any constituent read and the consensus of

the MSA is relatively small. These are controlled by

user specified parameters.

Another extended MSA method was proposed in

ECHO [13], which consists of two major stages:

neighbor finding and maximum a posteriori error

correction. In the first stage, read adjacencies with

respect to the reference genome are identified in the

same manner as the ‘overlap’ step in the traditional

overlap-layout-consensus based Sanger assembler.

But, ECHO considers only substitutions. First,

both the input reads and their reverse complimentary

strands are recorded in a k-mer hash table in the form

of key-value pair: x,ðr,pÞ
� �

, where k-mer x starts at

position p on read r. Similar to Coral, k-mers that

occur with a high frequency in the data set are

ignored. Next, for each k-mer x, for each pair of

reads that contain x, pairwise alignment is applied

and considered as valid only if the minimum overlap

is � o and the maximum error rate in the aligned

region is � ". The parameters k, o and " are chosen

automatically: k is empirically set to be l=6
� �

. To

select o and ", it is assumed that reads are uniformly

sampled from the reference genome and the cover-

age follows Poisson distribution. The threshold

values are found using a grid search method within

the parameter space of (o, "). For each selected pair

of (o*, "*), neighbor finding method is applied to a

subset of input data that are randomly sampled. Then

the observed coverage histogram is generated for this

partial data and is approximated by a closest Poisson

distribution. The values of (o, ") are chosen such

that the difference between the observed coverage

and the corresponding Poisson distribution is mini-

mized. In the second stage, a position dependent

substitution matrix M¼ {M1, M2 . . .} is estimated

using an expectation maximization algorithm,

where Mi is a 4� 4 matrix recording substitution

error rate between any two bases in {A, C, G, T}

at position i. Then, for each alignment position

derived from the first stage, the consensus base is

calculated to be the maximum a posteriori estimate

using the base information in the alignment column

and the corresponding quality score information.
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BENCHMARKDATA SETSAND
EVALUATIONMETHODOLOGY
We selected data sets from real experiments instead

of simulations, including a diversity of read length,

genomic coverage and error rates. All data are from

resequencing experiments where the genome se-

quence is known a priori, which is needed for

computing the accuracy of error correction.

Quality, run time and memory usage are measured

for each method. By chronological order of their

release dates, the programs evaluated are—Hybrid-

SHREC (HSHREC for short) [16], Reptile [21]

(version 1.1), Quake [14] (version 0.3),

SOAPdenovo Corrector [23] (version 1.05,

SOAPec for short), HiTEC [12], ECHO [13] (ver-

sion 1.10) and Coral [17] (version 1.3).

Details of the chosen data sets are summarized in

Table 2. Besides two bacterial genomes that were

typically used in error-correction studies, we include

one data set from Saccharomyces cerevisiae and one from

Drosophila melanogaster since there is an increasing

need to apply error correction to larger eukaryotic

genomes. In addition to Illumina data used to assess

all the programs, we include 454 and Ion Torrent

data to evaluate HSHREC and Coral, which are the

only programs capable of handling insertion and de-

letion errors. Notably, D7 consists of reads of differ-

ent lengths, which is currently a typical sequencing

practice for large genomes.

Errors are identified by using a mapping program

to align reads to the reference genome. Only

uniquely mapped reads are considered, with errors

given by differences with the reference genome.

While eliminating unmapped reads and multiply

mapped reads will bias results, quite likely by under-

estimating the error rate, it is not possible to include

them in the analysis as the true bases remain un-

known. Read mapping is an active area of research

and many tools have been developed (e.g. [26–28]).

We select the well regarded state of the art mapping

program BWA [28] for aligning Illumina reads.

To demonstrate mapping program bias is negligible,

we also report results using RMAP [26] for data set

D3. For 454 (D4) and Ion Torrent (D8) reads, we

use Mosaik [29] and TMAP [30], respectively, as

each is designed specifically for the underlying

platform.

Using the above strategy, we first characterize the

errors present in the benchmark data sets (Table 3).

Illumina read mapping is carried out using BWA,

which is run with the default parameters for indexing

the reference genome (index -a bwtsw). The max-

imum allowable edit distance (parameter ‘-n’) is set

to be 4 for D1, 10 for D2, and 6 for the remaining

data sets. This is to account for differences in read

lengths. TMAP performs alignment in two stages,

using different algorithms in the second stage for

aligning reads left over in the first stage. We ran

TMAP with the option ‘mapall -g 3 map1 MAP2

MAP3’, enabling it to align using BWA [31] in the

first stage, and BWA-SW [28], SSAHA [32] in the

second stage. The other parameters are set to default.

We postpone the discussion of parameter selection

for Mosaik until later (Table 4).

Table 2: Sequence data sets

Data set Sequence read
archive accession
number

Platform Reference
genome

Genome
length

NCBI reference
sequence accession
number

Read length
(bp)

Number of reads

D1 SRX000429 Illumina E. coli 4 639 675 NC_000913 2� 36 20 816 448
D2 ERA000206 Illumina E. coli 4 639 675 NC_000913 2�100 28 428 648
D3 SRR022918 Illumina E. coli 4 639 675 NC_000913 2�47 14275243
D4 SRR000868 454 E. coli 4 639 675 NC_000913 37^385 230517
D5 SRX100885 Illumina S. cerevisiae 12071326 PRJNA128 2� 76 52061664
D6 SRR022866 Illumina S. aureus 2 820 462 NC_003923 2� 76 25169557
D7 SRX023452 Illumina D. melanogaster 119 029 979 ^ 2� {457595} 98391467

SRX006152
SRX006151
SRX015867

D8 ERR039477 IonTorrent E. coli 4 639 675 NC_000913 16-107 390 975

The sixth column specifies the corresponding reference genomes that are obtained fromNCBI website except for D7, which is obtained from BCM
Drosophila database (http://www.hgsc.bcm.tmc.edu/project-species-i-DGRP_lines.hgsc), line RAL-391 (freeze1_July_2010). This genome consists of
five chromosomes (Line391_Chr2L, Line391_Chr2R, Line391_Chr3L, Line391_Chr3R and Line391_ChrX), the concatenation of which forms the refer-
ence genome.The S. cerevisiae reference genome of D5 is a concatenation of16 chromosomes.
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We use the following measures for each pro-

gram—number of erroneous bases identified and

successfully corrected (true positives, TP), correct

bases wrongly identified as errors and changed

(false positives, FP), and erroneous bases that were

either uncorrected or falsely corrected (false nega-

tives, FN). We report sensitivity and specificity for

each program. Then, we combine these into the gain

metric [21], defined by gain¼ (TP� FP)/

(TPþ FN), which is the percentage of errors

removed from the data set by the error-correction

program. A negative gain value indicates that more

errors have been introduced due to false corrections,

which is not captured by measures such as sensitivity

and specificity. We disregarded other measures used

in the literature if they cannot be directly tied to

accuracy improvements. For instance, [16] measures

whether the percentage of reads that can be uniquely

aligned to the reference genome increased after

applying error correction. However, converting

every ambiguously mapped read to one specific un-

related read known with high confidence will always

guarantee the best results. Another measure used is to

compare N50 values from assembly program by

assembling post-error-correction data versus assem-

bling the original data set [17]. While this is useful to

show assemblers benefit from error-correction pro-

gram, this cannot be used to determine accuracy of

the error-correction program because of interference

from built in error-correction component of assem-

bly program.

We denote an error e in a read by a 4-tuple (g,i,t,w)

where g is the genomic position of e, t and w are

the true and wrong bases at g, respectively, and i
indicates e represents i-th inserted base after position g.
Therefore, for a substitution error, t, w2 {A,C,G,T}

and i¼ 0; for a deletion error, t2 {A,C,G,T}, w¼�
denoting a missing base, and i¼ 0; for an insertion

error, t¼�, w2 {A,C,G,T}, and i 6¼ 0. An at-

tempted error correction can also be described by

the same 4-tuple, with the interpretation that base

w in the read is being replaced with base t.
To calculate gain, we need the set of real sequen-

cing errors Em and the set of attempted corrections Ec
made for each read r using any error-correction pro-

gram. Alas, the former can only be approximated by

read mapping, and the latter is usually untraceable

because most programs only provide corrected

Table 3: Mapping statistics

Data set Number of
reads

No. of reads
containing Ns

No. multi-mapped &
unmappable reads

Coverage Error rate before
correction (%)

D1 20 816 448 107 740 795924 160.7 0.51
D2 28 428 648 1795 045 1398 918 574 1.01
D3 14275243 7155 638 3248 669 72.1 1.54
D4 230517 8141 4575 11.6 0.26
D5 52061664 1455543 11759 905 244 0.68
D6 25169557 1036 879 10320 864 650.3 1.55
D7 98391467 2716 595 22660379 56.3 1.15
D8 390 975 0 16 422 7.8 1.28

Thenumber of reads that contain one ormoreNs is shown in the third column. Since suchreads cannotbehandledby somemethods such asHiTEC,
they are removed prior to evaluation and for coverage calculation (column five).The fourth column specifies the number of reads that are mapped
tomultiple locations or those that cannot bemappedwithin a specified edit distance.

Table 4: Alignment results of D4 using different penalty values of Mosaik

Experiment Mismatch
(% length)

mr mp go ge Number of
soft-clipped bases

Number of
unmapped reads

Error rate before
correction (%)

E1 5 10 9 15 6.6 51256 3211 0.30
E2 (default) 15 10 9 15 6.6 60700 1641 0.33
E3 2 10 9 10 6.6 9259 10 982 0.26
E4 3 10 9 8 6.6 8931 10 955 0.27
E5 5 10 9 8 6.6 11940 3076 0.35

mr, match reward;mp, mismatch penalty; go, gap open penalty; ge, gap extension penalty
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reads as output. We thus infer TP, FP and FN as

follows:

Case 1: only substitution errors are targeted for

correction. Let r be an original read and rc be

the read post-correction. Derive Em by mapping r
to the reference genome and recording

differences. Ec can be derived from bases that differ

when calculating Hamming distance between r and

rc. Then, calculateTP¼ j Ec\Em j, FP¼ j Ec \ Em j,
FN¼ j Em \ Ec j.

Case 2: Indel errors are also targeted for correction.

Em is calculated as before but the method to calculate

Ec in case 1 is no longer valid, even in the case

where jrcj ¼ jrj. For example, let r¼TTTAAT

TCAGGTAT and rc¼TTAATTCAGGTATT

with a Hamming distance of 8 between them. We

over-counted FP by 6 if the true Ec consists of an

insertion and a deletion error at the beginning and

the end of the read, respectively, as shown below:

r TTTAATTCAGGTAT -

rc - TTAATTCAGGTATT

Hence, instead of directly calculating Ec, we measure

Er, the set of errors remaining in rc, by applying global

alignment between rc and the genomic region where r
was mapped to, and recording the differences in the

alignment. Accordingly, calculate TP¼ j Em \Er j,
FP¼ j Er \Em j and FN¼ j Er\Em j. In practice,

we used banded alignment to speed up the pro-

cess, because it gives a comparable results com-

pared with the global alignment but is significantly

faster.

RESULTSANDDISCUSSION
All experiments were carried out on an HP ProLiant

DL580G7 server, which has four quad-core Intel

Xeon E7520 (1.8 GHz) processors, 128 GB main

memory and disk capacity of 370 GB. The server is

running 64-bit Ubuntu 11.04 OS. Parameters for

each program were chosen based on guidance pro-

vided by the developers. HSHREC was run with

default parameters since instructions for choosing

parameters is not given. For Reptile, the parameters

(k, step) are set to be (11, 11) for bacterial genomes,

(12, 12) for S. cerevisiae and (14, 10) for D. melanoga-
ster, where 4k� genome length. In D5 and D7,
‘QThreshold’ is set to be the minimum quality

value in the data set, since it is unclear how to

choose a proper value for this data set. The remain-

ing parameters are set by default as per the instruc-

tions in the README file. Quake is run with k¼ 15

for Escherichia coli and k¼ 17 for D. melanogaster, as

suggested by the program manual. HiTEC 64-bit

version was used for all the experiments since the

32-bit version was not able to run on some of the

data. SOAPec is run in two steps: (i) ‘KmerFreq –i lst

–o freq –f 2’, where lst is a file listing the names of

fasta files, and freq is the output file recording

17-mer frequency, and (ii) ‘Corrector –i lst –r freq

–f 2’. Two parameters are required to be set manu-

ally for HiTEC: reference genome length and error

rate. The former was set to be the real reference

genome length according to Table 2, and the latter

was set to be 2%, an upper bound of the average

error rate in Table 3. Other parameters are selected

automatically by the program. ECHO was run with

the default parameters since it has a mechanism for

automatically choosing parameters. Coral also has

a mechanism to select parameters automatically,

therefore, it was run with default parameters by set-

ting sequencing platforms to ‘-illumina’ for Illumina

data sets, and ‘�454’ for 454 and Ion Torrent data

sets.

Error-correction results for Illumia data sets are

summarized in Table 5, and for 454 and Ion

Torrent data sets in Table 6. For Illumina data sets,

HSHREC, Reptile, SOAPec and Coral were able to

generate complete results. ECHO produced a sig-

nificant amount of intermediate data and failed to

yield any results for D1 after running for over two

days. Similar behavior was observed for D2, D5 and

D6. However, for data set D7, ECHO was running

for more than one day but the job had to be killed

due to large size of temporary files it generated (over

130 GB) saturated the hard drive. Quake failed on

D2, D5 and D6, with an error message indicating

that the data set has insufficient coverage over the

reference genome. Nonetheless, all three data sets

have ultra-high coverage. HiTEC failed with ‘seg-

mentation fault’ error for data sets D5 and D6. In

addition, it was not able to run on D7, where the

reads have different length. For 454 and Ion Torrent

data sets, both HSHREC and Coral generate com-

plete results. For each data set, the best result of

different methods is shown in bold for ‘Gain’,

‘Run-time’ and ‘Memory’ values. In the following,

we discuss the results on Illumina data sets separately

from 454 and Ion Torrent data sets.
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Illumina
Only four programs—HSHREC, Reptile, SOAPec

and Coral—succeeded in generating results for all

data sets. Reptile consistently produced superior

gain which is generally a factor of two better than

SOAPec, which itself has better gain values com-

pared with the other two. SOAPec often uses sig-

nificantly more memory than Reptile. Among those

data sets where results can be generated for all meth-

ods under comparison, Reptile, HiTEC and ECHO

yield comparable gain values that are superior to

other methods. HiTEC and ECHO have automated

parameter selection for many of the program param-

eters, compared with the manual default parameter

selection mechanism in Reptile. Reptile, on the

other hand, has a better scalability to larger data

sets. An improvement could be achieved by includ-

ing in Reptile an automated parameter selection

method such as those used in HiTEC or ECHO.

The current version of HiTEC does not handle ‘N’

Table 5: Experimental results for Illumina data sets

Data set Method Specificity Sensitivity Gain Runtime (min) Memory (GB) Error rate after
correction (%)

D1 HSHREC 0.9913 0.6262 �2.8864 153.23 14.3 0.97
Reptile 0.9999 0.9341 0.9334 23.32 3.7 0.03
Quake 0.9998 0.8167 0.7840 38.88 4.1 0.11
SOAPec 0.9989 0.8099 0.5982 25.51 21.1 0.20
HiTEC 0.9996 0.9299 0.8467 143.13 13.0 0.08
ECHO ^ ^ ^ ^ ^ ^
Coral 0.9999 0.5835 0.5794 36.19 7.5 0.21

D2 HSHREC 0.9930 0.2852 �1.6063 779.15 29.9 0.96
Reptile 0.9999 0.9137 0.9101 225.43 19.1 0.09
SOAPec 0.9991 0.3380 0.2512 124.30 23.3 0.75
Quake; ECHO ^ ^ ^ ^ ^ ^
HiTEC 0.9999 0.9557 0.9498 683.87 9.8 0.05
Coral 0.9999 0.1134 0.1127 450.29 30.0 0.90

D3 HSHREC (B) 0.9866 0.6355 �0.3166 74.13 12.6 1.83
HSHREC (R) 0.9860 0.6256 �0.2690 1.96
Reptile (B) 0.9999 0.8535 0.8521 71.64 3.4 0.29
Reptile (R) 0.9999 0.7927 0.7910 0.45
SOAPec (B) 0.9958 0.5861 0.3667 24.08 19.9 1.23
SOAPec (R) 0.9955 0.5447 0.3436 1.41
Quake (B) 0.9990 0.3648 0.3134 80.43 2.0 1.34
Quake (R) 0.9990 0.332 0.2856 1.54
HiTEC (B) 0.9997 0.9466 0.9291 59.19 6.2 0.14
HiTEC (R) 0.9995 0.9345 0.9122 0.19
ECHO (B) 0.9999 0.9091 0.9076 304.21 16.0 0.18
ECHO (R) 0.9999 0.8986 0.8973 0.22
Coral (B) 0.9999 0.0003 0.0029 8.32 7.7 1.94
Coral (R) 0.9999 0.0003 0.0027 2.15

D5 HSHREC 0.9773 0.3635 �2.4975 1027.48 30.1 2.75
Reptile 0.9999 0.2278 0.2243 165.88 4.12 0.61
SOAPec 0.9995 0.1871 0.1257 135.51 26.8 0.69
Quake; HiTEC; ECHO ^ ^ ^ ^ ^ ^
Coral 0.9999 0.0709 0.0678 544.31 34.5 0.73

D6 HSHREC 0.9688 0.2248 �4.2402 813.65 30.2 3.64
Reptile 0.9999 0.6194 0.6131 295.94 13.1 0.60
SOAPec 0.9989 0.3216 0.2571 153.67 22.5 1.15
Quake; HiTEC; ECHO ^ ^ ^ ^ ^ ^
Coral 0.9999 0.0276 0.0256 210.17 40.0 1.51

D7 HSHREC 0.9258 0.5702 �5.8509 2562.88 30.3 7.82
Reptile 0.9999 0.6745 0.6678 532.76 24.0 0.38
SOAPec 0.9983 0.5225 0.3779 415.03 36.8 0.72
Quake 0.9939 0.3993 �0.1262 222.35 12.1 1.30
HiTEC; ECHO ^ ^ ^ ^ ^ ^
Coral 0.9999 0.4532 0.4492 373.19 30.0 0.63

If a method fails to process a particular data set, corresponding entries are denoted by ‘^’s. All data sets are evaluated against BWA alignments.
For D3, (B)çComparedwith alignments from BWA (R)çComparedwith alignments from RMAP.
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characters that frequently occur in NGS data nor

does it handle data sets with different read length.

To overcome these limitations, the use of the suffix

array data-structure in HiTEC needs to be improved.

ECHO, on the other hand, relies on MSA for error

correction, which achieves high gain values, but with

a trade-off of large run-time and memory usage.

Although Coral, also a MSA-based method, has

much less run-time and memory usage compared

with ECHO, its performance is significantly worse

compared with ECHO when applied to Illumina

reads. It is worthwhile to note that Quake utilizes

an aggressive strategy to trim or discard reads, which

may lead to a significant percentage of data loss. For

instance, in D3, it discards 3 126 742 reads and

trimmed another 200 117 reads to a shorter length.

Although if we disregard all these reads, the gain

value improves significantly to 0.8.

As an illustration that different read mapping tools

can produce a consistent view of error-correction

program, we also used RMAP in our evaluation

for D3. Indeed, RMAP produced different results

from BWA, but the relative gain values of different

methods remained the same.

454 and IonTorrent
Mappers often perform soft clipping, which trims

ends of the reads containing low quality bases.

With default parameters, Mosaik soft-clipped

60 700 bases, which is 30% of the total number of

errors, thus excluding a large portion of the reads.

For evaluation of error correction, we aim to have

alignments that reduce both the number of

soft-clipped bases and unmapped reads, without dis-

torting the error rate of the data set. Mosaik’s default

parameters are such that the gap-opening penalty is

much higher than the mismatch penalty. Since 454

predominantly makes insertions/deletion errors,

allowing the gap open penalty closer to mismatch

penalty could avoid alignments with too many mis-

matches. We tuned down the maximum mismatch

value, which by default equals to 15% of the read

length. We conducted experiments varying different

alignment parameters—% read length of mismatch

allowed, match reward, mismatch penalty, gap open-

ing penalty and gap extension penalty. The number

of soft-clipped bases, unmapped reads and the error

rate for different choices of parameters are shown in

Table 6: Experimental results for 454/ion torrent data sets

Data set Method Specificity Sensitivity Gain Runtime
(min)

Memory
(GB)

Error rate after
correction (%)

D4 (k¼10)
D4/E1 HSHREC 0.9983 0.9063 0.2937 16.72 9.9 0.20

Coral 0.9986 0.9732 0.4976 2.57 2.4 0.15
D4/E2 HSHREC 0.9979 0.8730 0.2242 16.72 9.9 0.25

Coral 0.9983 0.9432 0.4252 2.57 2.4 0.19
D4/E3 HSHREC 0.9989 0.9137 0.4709 16.72 9.9 0.13

Coral 0.9993 0.9520 0.6984 2.57 2.4 0.08
D4/E4 HSHREC 0.9989 0.9130 0.4737 16.72 9.9 0.13

Coral 0.9993 0.9520 0.7029 2.57 2.4 0.08
D4/E5 HSHREC 0.9986 0.8689 0.4511 16.72 9.9 0.19

Coral 0.9992 0.9512 0.7346 2.57 2.4 0.09
D4 (k¼ 20)
D4/E1 HSHREC 0.9983 0.9063 0.2931 16.72 9.9 0.20

Coral 0.9986 0.9732 0.4921 2.57 2.4 0.15
D4/E2 HSHREC 0.9978 0.8736 0.1859 16.72 9.9 0.26

Coral 0.9981 0.9437 0.3716 2.57 2.4 0.21
D4/E3 HSHREC 0.9989 0.9137 0.4709 16.72 9.9 0.13

Coral 0.9993 0.9520 0.6985 2.57 2.4 0.08
D4/E4 HSHREC 0.9989 0.9130 0.4736 16.72 9.9 0.13

Coral 0.9993 0.9520 0.7029 2.57 2.4 0.08
D4/E5 HSHREC 0.9986 0.8689 0.4511 16.72 9.9 0.19

Coral 0.9992 0.9512 0.7330 2.57 2.4 0.10
D8
D8/with all mapped reads HSHREC 0.9959 0.7567 0.3999 8.72 10.21 0.68

Coral 0.9971 0.7361 0.5155 1.13 2.24 0.62
D8/excluding reads with >10 errors HSHREC 0.9968 0.7763 0.4502 8.72 10.21 0.53

Coral 0.9982 0.7706 0.6047 1.13 2.24 0.43
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Table 4, and the corresponding results are shown in

Table 6. Evaluation with two different alignment

bands are shown as k¼ 10 and k¼ 20 in the table.

For the Ion Torrent data set D8, TMAP is able to

produce alignments with no soft clipping, but the

side effect of such a mapping is that some of the

alignments have larger edit distances. For D8,
TMAP generated an alignment of maximum edit

distance of 25, and 5603 reads were aligned with

edit distance >10. Table 6 shows the results for

D8 for the cases where we include all mapped

reads, and when we ignore the reads with aligned

edit distances >10 to adjust for excessive corrections.

The performance of Coral is consistently better than

HSHREC in both data sets tested. However, neither

of these methods explicitly models homopolymer or

carry-forward errors in such types of data.

In summary, for Illumina read correction, Reptile,

HiTEC and ECHO are generally more accurate

compared with other methods. Parameter selection

in HiTEC and ECHO involves less manual work

compared with Reptile. HiTEC is limited by its in-

ability to handle variable read lengths, and ambigu-

ous bases in the reads recorded as ‘N’. Compared

with ECHO, HiTEC and Reptile have a better scal-

ability to larger genomes. Currently, HSHREC and

Coral are the only programs that can handle inser-

tion/deletion errors, with Coral providing better re-

sults among the two. However, their performance is

not on par with substitution-error-based error-cor-

rection methods and further work is needed.

CONCLUSIONSAND FUTURE
DIRECTIONS
Owing to the predominant use of Illumina sequen-

cers, most error-correction programs to date have

focused only on substitution errors due to the result-

ing computational advantages. Although 454 se-

quencers have been around for a long time, their

long reads and low error rates make the use of

error-correction program much less important. This

has changed with the introduction of Ion Torrent,

which produces short reads and predominantly

makes insertion and deletion errors. Current meth-

ods that handle indels do not achieve as good results

as those targeting Illumina, and there is need for

improved algorithms here.

Further research on error-correction algorithms is

needed due to many current deficiencies: automated

choice of parameters sensitive to data set being

processed is important to avoid the user inadvertently

choosing wrong parameters. Existing stand-alone

error-correction programs target haplotype genome

sequencing. Differentiating polymorphisms from

sequencing errors, especially when polymorphism

rate is comparable to error rate, is a challenging prob-

lem; also, extending error correction to non-

uniformly sampled data sets and metagenomic data

sets are important. None of the current methods

handle paired read information, which can be

useful to error correct reads that come from repeat

regions. There is need for improving run-time and

memory footprint of the algorithms in light of the

factor of 10 throughput advances per year that pro-

pelled some NGS systems into the range of billions

of reads per experiment. A very important unad-

dressed problem is correcting hybrid data sets of

sequences derived from multiple platforms.

Key Points

� Error correction to improve sequence accuracy is important to
many applications of NGS.

� This reviewpaper provides a comprehensive assessmentofmany
error correction algorithms using a common set of benchmarks
and assessment criteria to enable practitioners to choose the
rightmethod targeted to their application needs.

� Further progress is needed to handle large genomes and larger
datasets, to handle insertion and deletion errors, to correct
hybrid datasets frommultiple next generation platforms, and to
develop error correction methods for datasets in population
studies.
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