STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600086 B.SC., DEGREE END SEMESTER ONLINE EXAMINATION NOV 2021

ELECTRONICS I

CODE: 19PH/MC/EL33
CLASS: II B.Sc. Physics

MAX.MARKS: 100
TIME: 3 HRS

SECTION A

Answer ALL the questions

(34 MARKS)
Choose the correct answer
($8 \times 1=8$)

1. In 1's complement subtraction of binary numbers, if there is no end around carry the answer should be
a) recomplemented
b)made negative
c) carry is disregarded
d) recomplemented and made negative
2. Which of the following flip flops is used as latch
a) JK flip flop
b) D flip flop
c) RS flip flop
d)T flip flop
3. Component that cannot be fabricated in an IC is \qquad
a)resistor
b)inductor
c)capacitor
d)transistor
4. Large and complicated circuits are formed by
a)Hybrid IC
b)Thick film IC
c) monolithic IC
d)thin film IC
5. Digital design often starts by constructing a \qquad with desired output.
a) K-Map
b) truthtable
c) logic gate
d) both a \& c
6. To display the digit 7 in a seven segment display indicator
a) A, B, C must be lighted
b) A,B must be off
c) F, B, C must be on
d) All segments must be lighted
7. The digital circuits can be made by the repeated use of
a) OR gates
b) NOT gates
c) NAND gates
d) EX-OR gates
8. When the light increases, the reverse current in a photo diode
a) Increases
b) decreases
c) is unaffected
d) becomes zero

Fill in the blanks
9. $\mathrm{A}(\mathrm{A}+\mathrm{A} . \mathrm{B})=$ \qquad
10. If Q_{3} and Q_{0} drive the NAND gate the modulus of the counter is \qquad .
11. Min term corresponding to 13 in a 4 variable K-Map is \qquad .
12. The forbidden state present in S R flip flop is defined in \qquad flip flop.
13. Dark resistance of a photodiode is given by the relation \qquad .

Answer briefly

(7x3=21)
14. How can you realize a D latch from a JK Flip-flop?
15. Differentiate between analog and digital signals?
16. Implement a logic circuit for the expression $Y=\bar{A} B C \overline{(A+D)}$.
17. How does LED differ from an ordinary diode? Give any two applications of LED.
18. Design a monolithic IC with transistor and a diode on a single substrate.
19. Explain the term rolling and redundant group in K map.
20. What is an IC? Why are ICs more dependable than the discrete circuits?

SECTION B

Answer any FOUR questions

($4 \times 9=36$)

1. What are the methods used to solve a Boolean expression? Simplify using K-map and realize the logic circuit using NAND gates. $\mathrm{Y}=\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,5,10,11,14,15)+\Sigma_{\mathrm{d}}$ (0,2,4,6,7).
2. a) How many half adders and full adders are required to perform the binary addition $101+10$? Indicate how the half adders and full adders are to be connected and also show the result of the addition.
b) Simplify the following Boolean expression

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\mathrm{A} \mathrm{~B} \mathrm{C}+\mathrm{A} \mathrm{~B} \mathrm{D}+\bar{A} \mathrm{~B} \bar{C}+\mathrm{CD}+\mathrm{B} \bar{D} .
$$

3. Illustrate the working of J K flip flop. Discuss on the race around condition.
4. Explain the fabrication of capacitor and resistor in a monolithic IC.
5. (a) Explain the term dark current. Determine the value of dark current using the following values $\mathrm{V}_{\mathrm{r}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{r}}=220 \mathrm{~K}$ ohms.
(b) What value of series resistor is required to limit the current through the LED to 15 mA , with a forward voltage drop of 1.8 V when connected to a 12 V supply.

SECTION C

Answer any ONE question

6. a) What are the difference between counters and registers? With necessary diagram, truth table and waveform, explain the function of UP counter. (15)
b) What is a photo diode? How does a photodiode operate? Discuss its characteristics and applications.(15)
7. a) What is a full adder? How is a full adder built using two half adders? Explain the working with a suitable example.(15)
b) What is a monolithic IC? Explain the different stages of fabrication of monolithic

IC. What are the limitations of IC?(15)

