STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (Effective from the academic year 2019-2020)

CODE: 19MT/PC/RA14

REAL ANALYSIS

END SEMESTER EXAMINATION – NOVEMBER 2021

Time: 3 Hours Max marks: 100

SECTION - A

ANSWER ALL THE QUESTIONS:

 $(2\times4=8)$

- 1. What are adherent points of a set in \mathbb{R}^n ? Distinguish it from an accumulation point giving an example for each.
- 2. What are the Additive Property of Total Variation of a function of bounded variation.

SECTION - B

ANSWER ANY TWO QUESTIONS:

 $(2 \times 12 = 24)$

- 3. Establish: The Integral as a Function of the Interval in R-S integrals.
- 4. Derive: Taylor's formula for functions from \Re^n to \Re^1
- 5. If A be an open subset of \Re^n and $\bar{f}:A \to \Re^n$ has continuous partial derivatives $D_i f_i$ on A. If $\bar{J}_{\bar{f}}(\bar{x}) \neq 0$ for all \bar{x} in A, prove that \bar{f} is an open mapping.

SECTION - C

ANSWER ANY TWO QUESTIONS:

 $(2 \times 34 = 68)$

- 6. a) State and prove Bolzano-Weierstrass Theorem.
 - b) If f is function of bounded variation on [a, b] and if $c \in (a, b)$ then prove that f is function of bounded variation on [a, c] and f is function of bounded variation on [c, b] and check its total variations.
 - c) Derive Integration by Parts for R-S integrals.

(15+9+10)

- 7. a) Necessary and Sufficient Condition for Existence of Riemann-Stieltjes Integrals
 - b) Derive a sufficient condition for differentiability.
 - c) State and prove the matrix form of chain rule for derivatives. (15+9+10)
- 8. State and prove implicit function theorem proving inverse function theorem.
