COURSE : CORE
PAPER : ABSTRACT ALGEBRA
TIME : 3 hours
MAXIMUM MARKS : 100
Section - A

Answer ALL questions $(2 \times 4=8)$

1. Let G be a group such that $o(G)=9000$, find the order of subgroups which G certainly contains.
2. Show that $\sqrt{3}+\sqrt[3]{5}$ is algebraic over the field of rationals \mathbb{Q}.

\[

\]

3. Prove that if G is a finite group, then the number of elements conjugate to a in G is the index of normalizer of a in G.
4. State and prove Eisenstein criterion.
5. Prove that if L is an algebraic extension of K and if K is an algebraic extension of F, then L is an algebraic extension of F.

Section - C
Answer ANY TWO questions $(2 \times 34=68)$
6. (a) Prove that if A and B are finite subgroups of G, then $o(A x B)=\frac{o(A) o(B)}{o\left(A \cap x B x^{-1}\right)}$.
(b) Prove that the number of p-Sylow subgroups in G equals $\frac{o(G)}{o(N(P))}$, where P is any p-Sylow subgroup of G.
(c) Prove that if G and G^{\prime} are isomorphic abelian groups, then for every integer $s, G(s)$ and $G^{\prime}(s)$ are isomorphic.
7. (a) State and prove the unique factorization theorem.
(b) Let p be a prime integer and suppose that for some integer c relatively prime to p we can find integers x and y such that $x^{2}+y^{2}=c p$. Then prove that p can be written as the sum of squares of two integers.
(c) Check whether the polynomial $x^{2}+x+1$ is reducible over F, the field of integers modulo 2 .
8. (a) Prove that if the field F is of characteristic zero and if a, b are algebraic over F, then there exists an element $c \in F(a, b)$ such that $F(a, b)=F(c)$.
(b) State and prove the fundamental theorem on Galois theory.

