B.Sc DEGREE EXAMINATION, NOVEMBER 2021 BRANCH I- MATHEMATICS

COURSE: CORE
PAPER: PRINCIPLES OF REAL ANALYSIS

TIME: 3 Hours
MAX MARKS: 100

Section - A

Answer all the questions ($3 \times 4=12$)

1. Prove that $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$.
2. Show that the $[0,1]$ is not connected subset of R_{d}.
3. Verify $\int_{a}^{\infty} \frac{x}{1+x^{2}} d x$ is convergent or divergent
Section - B

Answer any Three questions ($\mathbf{3} \times \mathbf{1 6}=\mathbf{4 8}$)
4. Prove that every open set G of R^{1} can be written $\boldsymbol{G}=U \boldsymbol{I}_{\boldsymbol{n}}$ where I_{1}, I_{2}, \ldots are mutually disjoint open intervals.
5. State and prove the generalized nested interval theorem on complete metric space.
6. Prove that the metric space $\langle M, \rho\rangle$ is compact if and only if every sequence of points in M has a subsequence convergent to a point in M.
7. Verify Cauchy mean value theorem for $f(x)=\sin x, g(x)=\cos x, \frac{-\pi}{2} \leq x \leq 0$. Section-C
Answer any one question ($1 \times 40=40$)
8. a. Prove that the real valued function f is continuous at $a \in R^{\prime}$ iff the inverse image under f of any open ball $B[f(a), r]$ about $f(a)$ contains open ball $B[a, \delta]$ about a.
b. Prove that the metric space with Heine Borel property is compact.
c. If $\left\langle M_{1}, \rho_{1}\right\rangle$ and $\left\langle M_{2}, \rho_{2}\right\rangle$ be two metric and $f: M_{1} \rightarrow M_{2}$ then prove that f is continuous on M_{1} if and only if $f^{-1}(F)$ is closed in M_{1} when F is closed in M_{2}
9. a. If a function is continuous in a compact metric space then prove that the function is uniformly continuous.
b. State and Prove the necessary and sufficient condition for a function to be Riemann integrable
c. State and prove the second Fundamental theorem of calculus.

