STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 86.

(For candidates admitted from the academic year 2019 and thereafter)

SUBJECTCODE: 19MT/MC/RA55

B.Sc DEGREE EXAMINATION, NOVEMBER 2021 BRANCH I- MATHEMATICS

COURSE: CORE
PAPER: PRINCIPLES OF REAL ANALYSIS

MAX MARKS: 100

- 1. Prove that $\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$.
- 2. Show that the [0, 1] is not connected subset of R_d .
- 3. Verify $\int_a^\infty \frac{x}{1+x^2} dx$ is convergent or divergent

- 4. Prove that every open set G of R^1 can be written $G = \bigcup I_n$ where $I_1, I_2, ...$ are mutually disjoint open intervals.
- 5. State and prove the generalized nested interval theorem on complete metric space.
- 6. Prove that the metric space $\langle M, \rho \rangle$ is compact if and only if every sequence of points in M has a subsequence convergent to a point in M.
- 7. Verify Cauchy mean value theorem for f(x) = sinx, g(x) = cosx, $\frac{-\pi}{2} \le x \le 0$.

Section – C

Answer any one question $(1 \times 40 = 40)$

- 8. a. Prove that the real valued function f is continuous at $a \in R'$ iff the inverse image under f of any open ball B[f(a), r] about f(a) contains open ball $B[a, \delta]$ about a.
 - b. Prove that the metric space with Heine Borel property is compact.
 - c. If $\langle M_1, \rho_1 \rangle$ and $\langle M_2, \rho_2 \rangle$ be two metric and $f: M_1 \to M_2$ then prove that f is continuous on M_1 if and only if $f^{-1}(F)$ is closed in M_1 when F is closed in M_2 (12+15+13)
- 9. a. If a function is continuous in a compact metric space then prove that the function is uniformly continuous.
 - b. State and Prove the necessary and sufficient condition for a function to be Riemann integrable
 - c. State and prove the second Fundamental theorem of calculus. (10+15+15)
