STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-86

(For candidates admitted during the year 2019 -2020 & thereafter)

SUBJECT CODE: 19MT/MC/IT54

B.Sc. DEGREE END SEMESTER EXAMINATION

BRANCH I- MATHEMATICS FIFTH SEMESTER

COURSE: MAJOR CORE

PAPER: INTEGRAL TRANSFORM

TIME : 3 HOURS MAX.MARKS: 100

SECTION-A

Answer **ALL** the questions

 $(3 \times 4 = 12)$

- 1. Find $L\{f(t)\}$, where f(t) = 0 when $0 < t \le 2$. = 3 when t > 2. 2. Using Fourier integral representation, show that $\int_0^\infty \frac{\omega \sin x\omega}{1+\omega^2} d\omega = \frac{\pi}{2}e^{-x}, x > 0$.
- 3. If $U(z) = \frac{2z^2 + 3z + 4}{(z-3)^3}$, |z| > 3, Find u_1 and u_2 .

SECTION-B

Answer any **THREE** questions

 $(3 \times 16 = 48)$

- 4. (a) Using Laplace transforms evaluate $\int_0^\infty \frac{e^{-3t} e^{-6t}}{t} dt$.
 - (b) Find the inverse Laplace transform of $\frac{1}{s(s-a)}$
- 5. Find the Fourier transform of $f(x) = \begin{cases} 1 x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$ Hence prove that

$$\int_0^\infty \frac{\sin s - s \cos s}{s^3} \cdot \cos \frac{s}{2} ds = \frac{3\pi}{16}.$$

- 6. Find the Z-tranform of (a) $a^n \cosh n\theta$ and (b) $a^n \sinh n\theta$.
- 7. Find the inverse Z-tranform of $F(z) = \frac{z^2}{(z-\frac{1}{2})(z-\frac{1}{2})}$ using convolution theorem.

SECTION-C

Answer any **ONE** question

 $(1 \times 40 = 40)$

- 8. a) Find $L^{-1}\left[\frac{s^2-s+2}{s(s-3)(s+2)}\right]$
 - b) Solve the Differential equation $2\left(\frac{dx}{dt} 3\frac{dy}{dt}\right) = t$, $\frac{d^2y}{dt^2} + x = 2y$ given that x = 0, y = 0, $\frac{dy}{dt} = 0$ when t = 0.
 - c) Find the inverse Z-transform of $\frac{2z(z^2-1)}{(z^2+1)^2}$ by Power Series Method.

(10 + 20 + 10)

- 9. a) Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$. Hence derive Fourier sine transform of $\emptyset(x) = \frac{x}{1+x^2}$
 - b) Solve $y_{k+2} 2y_{k+1} + y_k = 2^k$ with $y_0 = 2$, $y_1 = 1$ using Z-transform.

(20 + 20)
