STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2019-20 and thereafter)

SUBJECT CODE: 19MT/MC/DC14
B. Sc. DEGREE EXAMINATION, NOVEMBER 2021

BRANCH I - MATHEMATICS
FIRST SEMESTER
COURSE: MAJOR - CORE
PAPER : DIFFERENTIAL CALCULUS
TIME: 3 HOURS
MAX. MARKS: 100

## SECTION - A <br> Answer all the questions

1. Find the $\mathrm{n}^{\text {th }}$ derivative of $y=\sin ^{2} x$.
2. State the sufficient condition for extrema of functions with two variables.
3. Write any two properties of a catenary.

## SECTION - B

Answer any three questions $\quad(3 \times 16=48)$
4. Find the $\mathrm{n}^{\text {th }}$ derivative of $\frac{x^{2}}{(x+1)^{2}(x+2)}$.
5. Fins the radius of curvature at the origin for the curve $x^{3}+y^{3}-2 x^{2}+6 y=0$.
6. Find the envelope of $x / l+y / m=1$, where $l$ and $m$ are parameters and related by $l / a+m / b=1, a$ and $b$ are constants.
7. Find the extreme values of $y z+3 z x+2 x y$ where $x+y+z=1$.

SECTION - C

## Answer any one question

8. a) If $x=\sin \theta, y=\sin p \theta$ then prove that
(i) $\left(1-x^{2}\right) y_{2}-x y_{1}+p^{2} y=0$
(ii) $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(p^{2}-n^{2}\right) y_{n}=0$
b) Find the radius of curvature of the curves $x=\operatorname{acos}^{3} \theta, y=a \sin ^{3} \theta$ at $\theta=\pi / 4$.
c) Show that the function $(x+y)^{4}+(x-3)^{6}$ has a minimum at $(3,-3)$.

$$
(16+14+10)
$$

9. a) Find the centre of curvature of the curve $y=x^{3}+2 x^{2}+x+1$ at the point $(0,1)$.
b) Find the evolute of the curve $x=a \cos \phi, y=b \sin \phi$, by treating the evolute as the envelope of its normal.
c) Determine the nature and the existence of the double points on the curve

$$
\begin{equation*}
x^{4}+4 x^{3}+2 y^{3}+4 x^{2}+3 y^{2}-1=0 . \tag{10+14+16}
\end{equation*}
$$

