Stella Maris College (Autonomous), Chennai - 600 086 (For candidates admitted during 2019 academic year and thereafter) B.Sc. Degree Examination, November 2021

Code: 19MT/MC/AS55

Algebraic Structures

Max. Marks: 100 Duration: 3 hours

Course: Major Core

Section A

Answer **all** the questions $(3 \times 4 = 12)$

- 1. Prove that in a group $(ab)^2 = a^2b^2$ if and only if ab = ba.
- 2. Define stabilizer and orbit of a point.
- 3. Check whether the mapping φ from the rings \mathbb{Z}_4 to \mathbb{Z}_{12} given by $\varphi(x) = 3x$ is a ring homomorphism.

Section B

Answer any three questions $(3 \times 16 = 48)$

- 4. State and prove the one-step subgroup test.
- 5. Determine the order of the permutation (12)(134)(152). Also find whether the permutation is even or odd.
- 6. State and prove Lagrange's theorem.
- 7. Let $R = \left\{ \begin{bmatrix} a & a \\ b & b \end{bmatrix} : a, b \in \mathbb{Z} \right\}$. Prove or disprove that R is a subring of $M_2(\mathbb{Z})$.

Section C

Answer **any one** question $(1 \times 40 = 40)$

- 8. a) State and prove Cayley's theorem.
 - b) Let $H = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} : a, b, d \in \mathbb{R}, ad \neq 0 \right\}$. Is H a normal subgroup of $GL(2, \mathbb{R})$.
 - c) Prove that a finite integral domain is a field.

(15 + 15 + 10)

- 9. a) Prove that an integral domain can be imbedded into a field.
 - b) Find all the subgroups of Z_{30} .

(25 + 15)
