M. Sc. DEGREE EXAMINATION, NOVEMBER 2021
 BIOINFORMATICS FIRST SEMESTER

COURSE : CORE
PAPER : BIOMOLECULES AND BIOCHEMISTRY
TIME : $\mathbf{1 8 0}$ MINUTES

MAX. MARKS: 100
SECTION - A

ANSWER ALL THE QUESTIONS IN A LINE OR TWO
 ($\mathbf{1 0} \mathbf{x} 2=20$ MARKS $)$

1. Name any two chemical bonds.
2. Draw the structure of purine and pyrimidine
3. Mention the energetics of glycolysis
4. Define xenobiotics
5. Classify the amino acids based on their functional groups.
6. How enzymes are regulated?
7. Draw the Vmax and Km in the case of competitive inhibition.
8. Define enthalpy and entropy
9. Write any two applications of spectroscopy in biology.

SECTION - B

ANSWER ANY TWO QUESTIONS. EACH ANSWER SHOULD NOT EXCEED 500 WORDS. ALL QUESTIONS CARRY EQUAL MARKS. DRAW DIAGRAMS WHEREVER NECESSARY
 ($\mathbf{2} \times 20=40$ MARKS $)$

11. Comment on the importance of salvage pathway in nucleotide synthesis.
12. (i) Elucidate the importance of Ramachandran Plot in protein structure prediction.
(ii) Sketch the Ramachandran plot describing the different regions
13. Describe the following and highlight its impact on enzyme kinetics
a) Competitive inhibition
b) Non-competitive inhibition
c) Feedback inhibition
d) Allosteric modulation
14. Brief the β-oxidation pathway in fatty acid metabolism.

SECTION - C

Abstract

ANSWER ANY ONE QUESTION. EACH ANSWER SHOULD NOT EXCEED 1200 WORDS. ALL QUESTIONS CARRY EQUAL MARKS. DRAW DIAGRAMS WHEREVER NECESSARY ($1 \times 40=40$ MARKS $)$

15. Substantiate the energetics obtained from Kreb's cycle and highlight the pathway regulation.
16. Elaborate the principle, instrumentation and application of UV-Visible spectrometry.
