STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86

B.Sc. DEGREE EXAMINATION, NOVEMBER 2021

BRANCH IV- CHEMISTRY
FIFTH SEMESTER

COURSE: MAJOR CORE

PAPER: PHYSICAL CHEMISTRY-II
TIME: 3 HOURS
MAX.MARKS: 100
SECTION - A

Answer all the questions
 ($15 \times 2=30$ marks)
 I Choose the correct answer

1. A certain reaction is exothermic by 220 kJ and does 10 kJ of work. What is the change in internal energy of the system?
a) 230 kJ
b) -230 kJ
c) +210 kJ
d) -210 kJ
2. The decomposition of CaCO_{3} in a closed vessel is represented by the equation given below, the number of phases and components in below system are
\qquad respectively.

a) 2 and 3
b) 3 and 2
c) 2 and 2
d) 3 and 3
3. A system with lower CST is
a) Phenol- Water
b) Triethylamine- Water
c) Nicotine- Water
d) Ph nol -NaCl
4. One mole of Ammonia ($\gamma=1.33$) gas at $27^{\circ} \mathrm{C}$ is expanded under adiabatic condition to make volume 8 times. Final temperature is \qquad
a) 150 K
b) 200 K
c) 250 K
d) 100 K
5. The 1% solution of substances given below that will have the highest boiling point is \qquad .
a) $\mathrm{NH}_{2}-\mathrm{CO}-\mathrm{NH}_{2}$
b) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
c) NaCl
d) $\mathrm{Na}_{2} \mathrm{SO}_{4}$

II. Fill in the blanks:

6. Volt-Coulomb is the unit of electrical energy and its mechanical equivalent of heat is
\qquad _.
7. The expression relating the degree of dissociation of a substance and the Van't Hoff factor i is \qquad
8. The variation of μ with P of a constituent ' i ' of a system at constant T and composition is given by \qquad
9. For the combustion of one mole of $\mathrm{CH}_{3} \mathrm{COOH}_{(l)}$ at $25^{\circ} \mathrm{C}, \Delta n$ is \qquad
10. The enthalpy of fusion for benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}, 78.0 \mathrm{~g} / \mathrm{mol}\right)$ is $127.40 \mathrm{~kJ} / \mathrm{kg}$, and its melting point is $5.5^{\circ} \mathrm{C}$. Its entropy change when 2 mole of benzene melts at $5.5^{\circ} \mathrm{C}$ is \qquad
III- Answer the following: $(5 \times 2=10)$
11. What is efflorescence? Name two substances showing efflorescence.
12. Draw a phase diagram for the given system:

13. Give the of Clausius Inequality equation.
14. Calculate the maximum efficiency of a steam engine operating between 100° and $25^{\circ} \mathrm{C}$?
15. Write expressions for $K p$ for the following reactions.
i. $4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 4 \mathrm{KOH}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
ii. $2 \mathrm{Fe}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$

Section B

IV. Answer any five questions (5 x $8=40$)

16. a. If $G=f\left(T, P, n_{1}, n_{2}, n_{3},.\right)$, Derive a mathematical expression for variation of μ with P for an ideal gaseous system.
b. The equilibrium constant Kp for the dissociation reaction $2 \mathrm{H}_{2} \mathrm{~S} \leftrightarrow 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{S}_{2(\mathrm{~g})}$ is 1.18×10^{-2} at 1338 K and the enthalpy change $\Delta \mathrm{H}=177.4 \mathrm{~kJ}$. Calculate the equilibrium constant at 1573 K . (3)
17. a. A solution containing 1.5 g of barium nitrate in 0.1 kg of water freezes at 272.72 K . Calculate the apparent degree of dissociation of the salt. Molecular weight of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is $261 \mathrm{~g} / \mathrm{mol}$ and K_{f} of water is $1.86 \mathrm{~K} . \mathrm{Kg} / \mathrm{mole}$. (4)
b. Prove that $\left(\frac{\partial A}{\partial T}\right)_{V}=-S$ and $\left(\frac{\partial A}{\partial V}\right)_{T}=-P$. Hence prove $\left(\frac{\partial S}{\partial T}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$.
18. a. Identify whether the given mixtures are ideal or non- ideal solutions. Explain characteristics of each of them.
(i) $\mathrm{CCl}_{4}-\mathrm{SiCl}_{4}$ (ii) $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (5)
b. Consider the following potential energy diagrams for two different reactions.

Which plot represents an exothermic reaction?
In plot a, do the reactants on average have stronger or weaker bonds than the products?
In plot b, reactants must gain potential energy to convert to products.
How does this occur? (3)
19. a. Derive the thermodynamic phase rule. (5)
b. For the following reactions at constant pressure, predict if $\Delta H>\Delta U, \quad \Delta H<\Delta U$ or $\Delta H=\Delta U$
a. $2 \mathrm{HF}(g) \longrightarrow \mathrm{H}_{2}(g)+\mathrm{F}_{2}(g)$
b. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g)$
c. $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$
20. a. Prove $P V^{\gamma}=$ constant, for a reversible adiabatic process. From this deduce a relation in terms of P and T . (5)
b. Consider the reaction

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

carried out at $25^{\circ} \mathrm{C}$ and 1 atm . Calculate $\Delta H^{\circ}, \Delta S^{\circ}$, and ΔG° using the following data:

Substance	$H_{8}^{\circ}(\mathrm{kj} / \mathrm{mol})$	$\mathrm{S}^{\circ}(\mathrm{j} / \mathrm{K} \cdot \mathrm{mol})$
$\mathrm{SO}_{2}(g)$	-297	248
$\mathrm{SO}_{3}(g)$	-396	257
$\mathrm{O}_{2}(g)$	0	205

21. a. Illustrate steam distillation process for the purification of aniline. (5)
b. Calculate the mole fraction of HCl in a solution of HCl in $\mathrm{H}_{2} \mathrm{O}$, containing $36 \% \mathrm{HCl}$ by weight. (3)
22.a. Starting from Vander Waal's equation of state, derive an expression for Joule Thomson coefficient for real gases. (5)
b. At $1100 \mathrm{~K}, K_{p}=0.25$ for the reaction, $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)$. What is the value of K_{C} at this temperature? (3)

Section C

V. Answer any two questions

23. a. Draw the phase diagram of $\mathrm{Na}_{2} \mathrm{SO}_{4}-\mathrm{H}_{2} \mathrm{O}$ system and explain the following - (i)

Solubility curves (ii) Transition point curve (iii) Metastable curves (10)
b. Prove that the efficiency of Carnot's heat engine is always less than one. A machine absorbs 390J of heat from a hot reservoir and converts 30% of it into work. Calculate the amount of heat rejected by the machine. (5)
24. a. Derive a relation for the elevation in boiling point and its dependence on molality of the solution using the expression below

$$
\begin{equation*}
\Delta \overline{S_{v}} \cdot d T=\left(\frac{\partial \mu_{1}^{l}}{\partial \mu_{1}}\right)_{T, P} \cdot d x_{1} \tag{8}
\end{equation*}
$$

b. Explain the various features of phase diagram of Nitrobenzene -hexane system. (4)
c. What would happen to the position of equilibrium (which direction will it shift- right or left) when the following changes are made to the reaction below? (3)

$$
2 \mathrm{SO}_{3(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

(i) Sulfur dioxide is added to the system
(ii) Sulfur trioxide is removed from the system
(iii) Oxygen is added to the system
\qquad
25. a. Starting from Vander Waal's equation of state, derive an expression for joule Thomson coefficient of real gases. Subsequently deduce a relation for inversion temperature (10)
b. Explain the transformation of Nernst distribution law equation when the solute under study associates. (5)

