## B.Sc. DEGREE EXAMINATION, NOVEMBER 2021

BRANCH IV - CHEMISTRY
THIRD SEMESTER

## COURSE: MAJOR CORE

PAPER: PHYSICAL CHEMISTRY-I
MAX .MARKS: 100
TIME: 3 hours

## SECTION-A

Answer all the questions:

## I. Choose the correct answer :

1. $\mathrm{K}_{\text {sp }}$ for $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is expressed as $\qquad$
a) $\mathrm{s}^{2}$
b) $27 \mathrm{~s}^{4}$
c) $4 s^{3}$
d) $108 \mathrm{~s}^{5}$
2. The molecule that has net dipole moment is $\qquad$
a) $\mathrm{PH}_{3}$
b) $\mathrm{IF}_{7}$
c) $\mathrm{CO}_{2}$
d) $\mathrm{CCl}_{4}$
3. The ionisation constant of dimethylamine is $5.40 \times 10^{-4}$ the ionisation constant of its conjugate acid is $\qquad$
a) $1.33 \times 10^{-11}$
b) $1.23 \times 10^{-11}$
c) $1.29 \times 10^{-10}$
d) $0.123 \times 10^{-11}$
4. Borax belongs to $\qquad$ crystal system
a) hexagonal
b) orthorhombic
c) monoclinic
d) cubic
5. The number of planes of symmetry in a crystal is $\qquad$
a) six
b) four
c) nine
d) two

## II. Fill in the blanks:

6. Precipitation occurs when ionic product is $\qquad$ greater than solubility product.
7. In a crystalline solid, anions B are arranged in ccp lattice and cations A occupy $50 \%$ of the octahedral voids and $50 \%$ of the tetrahedral voids. The formula of the solid is $\qquad$
8. Aluminium phosphate is an example for a salt of $\qquad$ acid and $\qquad$ base.
9. RbI has $\qquad$ structure.
10. Structure of p-azoxyanisole is $\qquad$

## III. State True or False:

11. $\mu$ of $\mathrm{AsH}_{3}$ is 0.2 D
12. For a plane $-\mathrm{a}: \mathrm{b}: \infty$, Miller indices is (110)
13. $\mathrm{TiO}_{2}$ belongs to triclinic crystal system.
14. Transition point of p-cholesteryl benzoate is $175^{\circ} \mathrm{C}$.
15. $\mathrm{Fe}(\mathrm{OH})_{3}$ is a sparingly soluble salt.

## SECTION-B

## IV. Answer any five:

16. Calculate the \% of space occupied by a sphere in a bcc unit cell.
17. Discuss the applications of solubility product.
18. Draw and explain the unique structural features of NiAs
19. Define the following terms and also give their expressions:
a) magnetic permeability
b) magnetic susceptibility
c) buffer capacity
d) dipole moment
( $4 \times 2$ marks each $=8$ )
20. Complete the Weiss indices , Miller indices for faces having intercepts.
a) $a: b / 3: c / 2$
b) $a / 2: b / 4: \infty$
c) $\infty: b: \infty$
d) $2 \mathrm{a}: 4 \mathrm{~b}: 3 \mathrm{c}$
( $4 \times 2$ marks each $=8$ )
21.What are buffers? Derive Henderson-Hasselbalch equation and explain its significance.
21. NaCl has face-centered cubic lattice, illustrate with the use of X-ray diffraction technique.

## SECTION-C

## V. Answer any two:

23.Derive the expression for $\mathrm{K}_{\mathrm{h}}$, h and pH of hydrolysed salt solution of potassium cyanide.
24.a) Discuss the significance, types, structures and applications of liquid crystals
b)Differentiate between diamagnetism , paramagnetism and ferromagnetism with suitable examples.
25.a) Equal volumes of $0.02 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ and $0.02 \mathrm{M} \mathrm{BaCl}_{2}$ are mixed together. Predict whether precipitation will occur or not. $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{BaSO}_{4}$ is $1.5 \times 10^{-9}$.
b) An element having atomic mass 60 has face centered cubic unit cells. The edge length of the unit cell is 400 pm .Calculate the density of the element.
c) Explain the Schottky defects in stoichiometric crystals. What are the consequences of Schottky and Frenkel defects in crystals?

