B.Sc. DEGREE EXAMINATION, NOVEMBER 2021

THIRD SEMESTER

COURSE: ALLIED CORE

PAPER: FUNDAMENTALS OF CHEMISTRY-I

MAX .MARKS: 100

TIME: 3 HOURS

SECTION-A

Answer all the questions
($\mathbf{1 5} \times 2=30$ Marks)

I. Match the following:

1. Cis-polyisoprene
a. Disaccharide
2. Tyrosine
b. Lewis base
3. Maltose
c. Condensation polymer
4. Ammonia
d. Aromatic amino acid
5. Bakelite
f. Natural rubber

II. Fill in the blanks:

6. Expansion of PTFE is \qquad
7. Structure of a carbocation is \qquad
8. The characteristic functional group present in compounds that are used as food preservatives is
9. Decomposition of acetaldehyde is a \qquad order reaction.
10. pH of human blood is maintained by \qquad buffer system.

III. State true or false:

11. Unit of zero order rate constant is $\mathrm{mol} \mathrm{L}^{-1} \mathrm{sec}^{-1}$
12. Heterolytic fission results in the formation of free radicals
13. Oxalic acid is a polyprotic acid.
14. Radioactive disintegration follows first order kinetics.
15. Cysteine is an aliphatic amino acid.

SECTION-B

IV. Answer any five :
(5x8=40 Marks)
16. Discuss the free radical mechanism of addition polymerisation.
17. State Ostwald's Dilution law. Derive the expression for K_{a} and highlight the significance of its relation to α.
18. a) Differentiate between thermoplastic and thermosetting plastics using suitable examples.
b) Explain the process of vulcanisation of rubber.
19. a) What is pH ? Explain the importance of the pH scale.
b) How many grams of NaOH must be dissolved in one litre of the solution to obtain a solution of $\mathrm{pH}=12$?
20. a) Derive the expression for the rate constant of a first order reaction.
b) 50% of a first order reaction is complete in 23 minutes. Calculate the time required to complete 90% of the reaction.
21. a) Draw the Fischer and Haworth projection of fructose
b) Differentiate between amylose and amylopectin components of starch.
22. a) Differentiate between electrophiles and nucleophiles.
b) Draw and explain the stability of a carbanion and a free radical.
c) Explain with an example-substitution reaction .

SECTION-C

V. Answer any two:

(2x15=30 Marks)
23.a) Draw the structure and discuss the applications of:
i) polyethylene
ii) polyvinyl chloride
iii) Nylon 6,6
(3x5 marks each=15)
24.a) Describe the primary, secondary, tertiary and quaternary structure of proteins.
b) Explain denaturation of proteins
25. a) What are buffer solutions? Derive Henderson-Hasselbalch Equation.
b) Describe the half-life and Ostwald Isolation methods of determining the order of the reaction. (8)

