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Abstract. In this paper we find a new lower bound on the number of imaginary
quadratic extensions of the function field Fq (x) whose class groups have elements of
a fixed odd order. More precisely, for q , a power of an odd prime, and g a fixed odd

positive integer ≥ 3, we show that for every ε > 0, there are � q
L( 1

2 + 3
2(g+1)

−ε)

polynomials f ∈ Fq [x] with deg f = L , for which the class group of the quadratic
extension Fq (x,

√
f ) has an element of order g. This sharpens the previous lower bound

q L( 1
2 + 1

g ) of Ram Murty. Our result is a function field analogue which is similar to a
result of Soundararajan for number fields.
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1. Introduction

For a square-free integer D, let Cl(−D) denote the ideal class group of Q(
√−D), and

let h(−D) = #Cl(−D) denote the class number. In his 1801 Disquisitiones Arithmeticae,
Gauss put forward the problem of finding all positive square-free D such that h(−D) is
some fixed number C . Heegner [15], Baker [5] and Stark [25] solved Gauss’s problem
completely for C = 1. Subsequently, Baker [6] and Stark [26] provided solutions to the
case C = 2. Recently, Watkins [27] extended the range of the complete solutions to
Gauss’s problem for C ≤ 100.

A related problem of interest is to determine the existence of g-torsion subgroups of
Cl(−D) for positive integers g. Gauss studied the case g = 2. Davenport and Heilbronn
[10] proved that the proportion of D with 3 � h(−D) is at least 1/2. For any g the infini-
tude of such fields was established by Nagell [21], Honda [17], Ankeny and Chowla [3],
Hartung [16], Yamamoto [30] and Weinberger [28].

For a positive integer g, let Ng(X) denote the number of positive square-free D ≤ X
such that g|h(−D). Gauss’s genus theory (see [7]) demonstrates that 2|h(−D) whenever
D is a product of at least two odd prime numbers. This, in particular, implies that N2(X) ∼
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6X/π2. In general, it is believed that Ng(X) ∼ Cg X for some positive constant Cg . For
odd primes g, Cohen and Lenstra [8] conjectured that

Cg = 6

π2

(
1 −

∞∏
i=1

(
1 − 1

gi

))
.

Ankeny and Chowla [3] were among the first to achieve an estimate for Ng(X) for g ≥
3. Although they did not explicitly point this out, their method shows that for g ≥ 3,

Ng(X) � X1/2. Recently, Murty [20] improved this lower bound to Ng(X) � X
1
2 + 1

g ,
which was subsequently sharpened by Soundararajan [24] who showed

Ng(X) �
{

X
1
2 + 2

g −ε
, if g ≡ 0 (mod4)

X
1
2 + 3

g+2 −ε
, if g ≡ 2 (mod4).

For q, a power of an odd prime, we define k := Fq(x) to be the function field over
the finite field Fq and A := Fq [x], its ring of integers. For a square-free f ∈ A, we will
denote the quadratic field extension k(

√
f ) by K , and its ring of integers A[√ f ] by B.

The function field analogue of the class number divisibility problem was initiated by Artin
[4]. Friesen [13] constructed infinitely many polynomials f ∈ A of even degree such that
the class groups for K have an element of order g where g is not divisible by q. In [19],

Murty and Cardon proved that for q ≥ 5 there are � q L( 1
2 + 1

g ) polynomials f ∈ A with
deg( f ) ≤ L such that the class groups for the quadratic extensions K have an element

of order g, which is analogous to the result Ng(X) � X
1
2 + 1

g of Murty [20]. Further, the

lower bound of Murty and Cardon was extended by Pacelli [22] to q L( 1
l + 1

g ) for cyclic
extensions Fq(x, l

√
f ) of Fq(x) where l is a prime dividing q −1. In [9], Chakraborty and

Mukhopadhyay have shown that there are � q L/2g monic polynomials f ∈ A of even
degree with deg( f ) ≤ L such that the ideal class group of the (real) quadratic extensions
K have an element of order g. This is a function field analogue of Murty’s result [20]
Ng(X) � X1/2g for real quadratic number fields.

The case when deg f is odd is analogous to the case of an imaginary quadratic num-
ber field in which the prime at infinity ramifies and the unit group has rank 0. Recently,
Merberg [18] used a function field analogue to the diophantine method of Soundararajan
[24] for finding imaginary quadratic function fields whose class groups have elements of
a given order. He further proved that if either c = 4, or c is any odd prime distinct from
the characteristic, then there are infinitely many such fields whose class numbers are not
divisible by c. Wong [29] gives a lower bound on the number of such pairwise distinct
quadratic extensions whose class numbers are not divisible by c, in the case when c is an
odd prime distinct from the characteristic. Precisely, he shows that if L ≥ 5, then for any
odd prime c � q, there are at least (ln L)/(ln 5) + 1 pairwise coprime D ∈ Fq [x] which
are square-free and of odd degree ≤ L , such that c does not divide the class number of
the imaginary quadratic fields Fq(x)(

√
D)/Fq(x).

Friedman and Washington [12] have studied the Cohen–Lenstra conjecture in the func-
tion field case, and Yu [31] has established the Cohen–Lenstra conjecture when the
characteristic p of Fq tends to infinity for fixed discriminantal degree. For recent devel-
opments in this direction, the reader may refer to [1], [2] and [11]. In the present work,
we follow the classical approach and obtain a lower bound on the number of imaginary
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quadratic function fields whose class groups have an element of order g for any odd g ≥ 3.
Specifically, we prove the following:

Theorem 1. Let g ≥ 3 be a fixed positive odd integer. Let q be a power of an odd prime.
For odd L , let Ng(L) denote the number of square-free polynomials f ∈ Fq [x] with
deg f ≤ L such that the class group of the quadratic extension Fq(x,

√
f ) contain an

element of order g. Then, for sufficiently large L we have

Ng(L) � q L( 1
2 + 3

2(g+1)
−ε)

.

We will work with polynomials f with deg f = L . This, however does not affect
the statement of our result. We will use ideas from [24] to achieve our result. From our
construction of the quadratic extensions of Fq(x) it will become evident that the case
when g ≡ 0 (mod 4) cannot be handled by our method. However, we remark that by a
straightforward group theoretic argument and Theorem 1, a new lower bound when g ≡ 2
(mod 4) can be achieved if one can first settle the function field analogue of Gauss’s genus
theory.

For basic function field related concepts, we refer the reader to [23]. We will denote by
F

×
q the multiplicative group of non-zero elements in Fq . For an integer U , we let π(U )

count the number of irreducible monic polynomials of degree U . For a f ∈ A, define the
norm | f | of f as | f | := qdeg f , and let sgn( f ) denote the leading coefficient of f . Let
the Möbius function μ( f ) be 0 if f is not square-free, and (−1)t if f is constant times
a product of t distinct irreducible monic polynomials in A. We will let d( f ) denote the
number of distinct monic divisors of f (including f/sgn f ). We further define the Euler
function φ( f ) to be the order of the unit group (A/ f A)× of the ring A/ f A. It can be
verified that

φ( f ) = | f |
∏
p| f

(
1 − 1

|p|
)

,

where the product is taken over irreducible monic polynomials. For a, b in A, the symbol

(a, b) will denote the greatest common monic divisor of a and b, and
(

a
b

)
denotes the

Jacobi symbol whenever relevant. For functions F and G, we will use the notation F �
G whenever F �� G. Finally, we would like to point out to the reader that the ε’s
appearing at different places are different.

We prove our result by first giving a criteria for the existence of elements of order
g in Cl( f ), the class group of K . This will be achieved in § 2. In order to obtain the
lower bound in the theorem, we need to count the number of square-free f meeting the
divisibility criteria. We will do this in § 3. Sections 4 and 5 provide the technical details
needed in § 3. The last section contains the conclusion of the proof.

2. A divisibility criteria for the class number of FFFq(x,
√

f )

For an element c + d
√

f in B = A[√ f ], with c, d in A, define the norm N (c + d
√

f ) of
c + d

√
f as

N (c + d
√

f ) = (c + d
√

f )(c − d
√

f ) = c2 − d2 f ∈ A.
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For an ideal v in B, we consider the ideal u in A generated by the set {N (a) : a ∈ v}.
Since A is a principal ideal domain, the ideal u is principal, say u = (a), where a ∈ A.
We define the norm N (v) of the ideal v to be N (v) := |a| = qdeg a , where | · | is the usual
norm of an element in A as defined earlier. We note that for a principal ideal (c + d

√
f )

in B, N ((c + d
√

f )) = |N (c + d
√

f )| = |c2 − d2 f | = qdeg(c2−d2 f ).
In the following proposition, we construct quadratic extensions of k whose class groups

contain an element of order g.

PROPOSITION 1

Let g ≥ 3 be an odd integer. Let f ∈ A be a square-free polynomial of odd degree.
If there exist nonzero m, n, t ∈ A such that t2 f = n2 − mg with (m, n) = 1 and
deg mg > max{deg n2, deg t4}, then the class group for K has an element of order g.

Proof. Suppose m, n and t exist as in the lemma. Rewriting t2 f = n2 − mg as mg =
n2 − t2 f , we see that the ideal (m)g factors in B as

(m)g = (n + t
√

f )(n − t
√

f ).

We note that any common divisor d of the ideals (n + t
√

f ) and (n − t
√

f ) contains 2n.
As 2 is a unit in A, we deduce that n ∈ d. On the other hand, d also contains mg , but
(mg, n) = 1. Thus d = B, that is the ideals (n + t

√
f ) and (n − t

√
f ) are co-prime in B.

Thus there exist ideals a and a′ in B such that (n + t
√

f ) = ag and (n − t
√

f ) = a′g .
We claim that the ideal class of a has order g. Assume otherwise that there is a positive

integer r < g such that ar is principal, say ar = (u + v
√

f ) for some u, v ∈ A. It is
clear that r |g. Taking norms we have N (a)r = qdeg(u2−v2 f ). We also have (n + t

√
f ) =

(u + v
√

f )g/r . Since t �= 0, it immediately follows that v �= 0. Thus v2 f �= 0 has
odd degree, and since u2 has even degree, deg(u2 − v2 f ) ≥ deg f . Therefore N (a)r =
qdeg(u2−v2 f ) ≥ qdeg f . On the other hand,

N (a)g = qdeg(n2−t2 f ) = qdeg mg = qg deg m .

Thus N (a) = qdeg m .
Now from qr deg m = N (a)r ≥ qdeg f we see that

r deg m ≥ deg f = deg

(
n2 − mg

t2

)
= g deg m − 2 deg t. (1)

The last equality above follows from our assumption that deg mg > max{deg n2, deg t4}.
Rearranging terms in inequality (1), we have deg m ≤ 2 deg t

g−r . But from our assumption

that deg mg > deg t4, it now follows that

4 deg t

g
< deg m ≤ 2 deg t

g − r
,

giving rise to g
r < 2, thereby contradicting the fact that r |g since g ≥ 3. This proves our

claim and hence the proposition. �
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3. Counting square-free f

In this section we shall obtain a lower bound on the number of square-free f ∈ A meeting
the criteria of Proposition 1. The bound obtained in this section will depend on some
parameter T to be determined in § 6 (see eq. (22)).

Thus we will be interested in counting the number of square-free polynomials f ∈ A
satisfying

n2 − mg = t2 f, (m, n) = 1 and deg mg > max{n2, t4}. (2)

Let deg m = M , deg n = N , deg t = T and deg f = L . In view of Proposition 1, we
assume that

T < L/2, Mg = 2T + L and N = T + L

2
− 1. (3)

From the above choice of M , N and T it follows that

Mg > max{2N , 4T },

that is deg mg > max{n2, t4}. Thus if f admits a solution to (2), then by Proposition 1,
Cl( f ) has an element of order g.

Let Ng(L , T ) count the number of square-free f with deg f = L satisfying (2). For a
square-free polynomial f ∈ A of degree L , let R( f ) denote the number of solutions in
monic m, n and t to (2). If we define the characteristic function χ( f ) as

χ( f ) =
{

0, if R( f ) = 0,

1, if R( f ) �= 0,

then we can write Ng(L , T ) as

Ng(L , T ) =
∑

deg f =L

χ( f ).

By the Cauchy–Schwarz inequality, we have

( ∑
deg f =L

χ( f )2
)( ∑

deg f =L

R( f )2
)

≥
( ∑

deg f =L

χ( f )R( f )

)2

,

which can be rewritten as

Ng(L , T ) ≥
( ∑

deg f =L

R( f )

)2( ∑
deg f =L

R( f )2
)−1

. (4)

Thus, in order to determine a lower bound on Ng(L , T ), we need to establish a lower
bound on (

∑
deg f =L R( f ))2 and an upper bound on

∑
deg f =L R( f )2.

In the next section we will obtain the lower bound on (
∑

deg f =L R( f ))2 by establish-
ing the following lemma.
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Lemma 1.
∑

deg f =L R( f ) � q M+N−T .

By a counting argument, we will show in § 5 the following lemma.

Lemma 2.
∑

deg f =L R( f )(R( f ) − 1) � qεL+2M+2T for every ε > 0 and L �ε 0.

Below we demonstrate how Lemmas 1 and 2 give a lower bound on Ng(L , T ). Observe
that ∑

deg f =L

R( f )2 =
∑

deg f =L

R( f )(R( f ) − 1)

+
∑

deg f =L

R( f ) � q M+N−T + qεL+2M+2T .

Thus ∑
deg f =L

R( f )2 � qεL+2M+2T (5)

provided

M + N − T ≤ εL + 2M + 2T . (6)

Therefore, from (4), (5) and Lemma 1 we have

Ng(L , T ) � q2(M+N−T )

qεL+2M+2T
= q2N−4T −εL .

Putting the value of N from (3) we get

Ng(L , T ) � q L−2T −2−εL � q L−2T −εL . (7)

The inequality in (6) and the lower bound in Theorem 1 will be achieved by suitably
choosing the parameter T in § 6.

4. Proof of Lemma 1

Let (m, n, t) ∈ A3 be a tuple of pairwise relatively prime monic polynomials with
deg m = M , deg n = N and deg t = T satisfying n2 ≡ mg(mod t2), and M , N and T are
as in (3). We define sets S1, S2 and S3 of such tuples (m, n, t) ∈ A3 as follows:

S1 =
{
(m, n, t) : p2 �

∣∣∣ n2 − mg

t2

for all monic primes p with deg p ≤ log L

}
,

S2 =
{
(m, n, t) : p2

∣∣∣n2 − mg

t2

for some monic primes p with log L <deg p ≤ Q

}
and

S3 =
{
(m, n, t) : p2

∣∣∣n2 − mg

t2
for some monic primes p with Q < deg p

}
.

Here logarithms are taken to the base q, and Q is some real parameter to be described
below.
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Let Ni = |Si | for i = 1, 2, 3. Note that Ng(L , T ) ≥ N1 − N2 − N3. Thus in order to
obtain a lower bound on Ng(L , T ), we would want N1 to be large compared to N2 + N3.
In other words, the sum we desire is N1 + O(N2 + N3). We shall show below that by
optimally choosing Q := (L − T + 2 log L)/3, one obtains

N1 � q M+N−T + o(q M+ L
3 + 2T

3 ),

N2 � q M+N−T /L + o(q M+ L
3 + 2T

3 )

and

N3 = o(q M+ L
3 + 2T

3 ),

where q is fixed in the above o(·) notation. Observe that for L > 4T + 6, it follows from
(3) that M + N − T ≥ M + (L/3) + (2T/3), and hence N1 � q M+N−T , and N2, N3
are small. The choice of T as in eq. (22), and by taking L > 2(g + 1), it is ensured that
L > 4T + 6. Thus it follows that∑

deg f =L

R( f ) � q M+N−T .

Estimation of N1. For a fixed monic m and t with deg m = M and deg t = T , we count
the number of monic polynomials n with deg n = N such that n2 ≡ mg(mod t2), and p2

does not divide n2−mg

t2 for all irreducible monic p with deg p ≤ log L .

Let ρm(l) denote the number of solutions (mod l) to the congruence n2 ≡ mg(mod l).
It is worth noting that ρm(l) is a multiplicative function of l, and if p � m is irreducible,
then for α ≥ 1 one has

ρm(pα) = ρm(p) = 1 +
(mg

p

)
= 1 +

(m

p

)
, (8)

as g is odd.
Set P = ∏

deg p≤log L p, where the product is taken over all irreducible monic polyno-

mials p. Thus, the sum
∑

l2|( f,P2) μ(l) = 1 or 0 depending on whether p2
� f for all p

with deg p ≤ log L or not. Here l is assumed to be monic. Thus in order to estimate N1,
the sum over n (with m and t fixed), what we seek is∑

deg n=N
n2≡mg(mod t2)

(n,m)=1

∑
l2|

(
n2−mg

t2
,P2

) μ(l) =
∑
l|P

(l,m)=1

μ(l)
∑

deg n=N
n2≡mg(mod l2t2)

1. (9)

If N ≥ deg l2t2, then for fixed l we have∑
deg n=N

n2≡mg(mod l2t2)

1 = q N

|l2t2|ρm(l2t2) = q N−2T ρm(l2t2)

|l2| ,

while if N ≤ deg l2t2 then∑
deg n=N

n2≡mg(mod l2t2)

1 ≤ ρm(l2t2).
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Thus the sum in (9) is∑
deg n=N

n2≡mg(mod t2)
(n,m)=1

∑
l2|

(
n2−mg

t2
,P2

)μ(l)

=
∑
l|P

(l,m)=1

μ(l)
q N

|l2t2|ρm(l2t2) + O

⎛
⎜⎜⎝ ∑

l|P
(l,m)=1

ρm(l2t2)

⎞
⎟⎟⎠

= q N−2T ρm(t2)
∑
l|P

(l,m)=1

μ(l)

|l|2 ρm(l/(l, t)) + O

⎛
⎜⎜⎝ ∑

l|P
(l,m)=1

ρm(l2t2)

⎞
⎟⎟⎠ ,

which can be written as

q N−2T ρm(t2)
∏
p|P

p-monic
(p,m)=1

(
1 − ρm

(
p/(p, t)

)
|p|2

)
+ O

⎛
⎜⎜⎝ ∑

l|P
(l,m)=1

ρm(l2t2)

⎞
⎟⎟⎠ , (10)

where the product is taken over irreducible monic polynomials p.
We trivially see that

∏
p|P

p-monic
(p,m)=1

(
1 − ρm

(
p/(p, t)

)
|p|2

)
< 1.

Also, it can be seen from ρm(p/(p, t)) = 1 +
(

m
p

)
≤ 2 that

∏
p|P

p-monic
(p,m)=1

(
1 − ρm(p/(p, t))

|p|2
)

≥
∏
all p

p-monic

(
1 − 2

|p|2
)

=
∏
all p

p-monic

(
1 − 1

|p|2
)2(

1+ 1

|p|2(|p|2−2)

)−1

.

Now, for x > 2 we have(
1 + 1

x(x − 2)

)
= (x − 1)2

x(x − 2)
≤ x2

x(x − 1)
=

(
1 − 1

x

)−1

.

Since |p| > 2, we have

∏
p|P

p-monic
(p,m)=1

(
1− ρm(p/(p, t))

|p|2
)

≥
∏
all p

p-monic

(
1− 1

|p|2
)3

= ζA(2)−3 =
(

1− 1

q

)3

.



Divisibility of class numbers of imaginary quadratic function fields 9

We have used ζA(s) = 1
1−q1−s above. This may easily be derived by looking at the series

expansion of ζA(s) (see [23]). Therefore the main term in (10) is � q N−2T ρm(t2). For
the error term in (10), we first note from (8) that

ρm(l2t2) = ρm(lt) =
∏
p|lt

ρm(p) =
∏
p|lt

(
1 +

(
m

p

))
≤

∏
p|lt

2 ≤ d(lt).

As l2t2 divides n2 − mg , we have from (3) that

2 deg l + 2 deg t ≤ Mg = L + 2T = L + 2 deg t.

Therefore deg l ≤ L/2. Also from (3) we have deg t = T < L/2. Hence deg lt ≤ L .
For a polynomial r(x) ∈ A with deg r ≤ X , it is an easy exercise to show that d(r) =

O(qεX ), where the O-constant depends on ε only (see pages 260–262 of [14] for the
classical divisor function). Therefore,

ρm(l2t2) ≤ d(lt) = O(qεL). (11)

Thus the error term in (10) is O(d(P)qεL). Now,

d(P) = 2π(1)+π(2)+···+π(log L) ≤ 2q+ q2

2 +···+ qlog L

log L � 2
L

log L ,

for all sufficiently large L . Here we have used that π(U ) ≤ qU /U for all U ∈ N (see
Proposition 2.1 of [23]). Thus the error term in (10) is O(qεL). Therefore, the sum in (9) is

� q N−2T ρm(t2) + O(qεL).

Now, summing over all monic m with deg m = M , and monic t with deg t = T we have

N1 � q N−2T
∑

deg m=M
deg t=T

ρm(t2) + O(qεL+M+T ). (12)

We now show that the error term in (12) is o(q M+ L
3 + 2T

3 ). We choose 0 < δ < 1
2 so that

q L/2 = o(q L(1−δ)). Since we have T < L/2 from (3), hence qT < q L/2 = o(q L(1−δ)).
Taking ε = δ

3 , we have qT/3 = o(q L/3q−εL), that is qεL = o(q L/3q−T/3).
Thus from (12) we have

N1 � q N−2T
∑

deg m=M
deg t=T

ρm(t2) + o(q M+ L
3 + 2T

3 ). (13)

We next show that∑
deg m=M
deg t=T

ρm(t2) � q M+T .

In order to prove this result we will need a couple of lemmas. The following lemma is an
easy exercise (see Ex. 12, page 20 of [23]).

Lemma 3. For an integer U ≥ 2, we have∑
y-monic

deg y=U

μ(y) = 0.
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The next lemma is based upon Lemma 17.10, Proposition 17.11 and Proposition 17.12
of [23] which we state without proof as follows.

Lemma 4. Suppose b /∈ F
×
q is not a square in A, and let deg b = B. Then

(i) for D ≥ B,

∑
a-monic
deg a=D

(b

a

)
= 0.

(ii) For 1 ≤ D ≤ B − 1,

∑
b-monic
deg b=B

∑
a-monic
deg a=D

(b

a

)
= (q − 1)
(D/2, M),

where


(D/2, M) =
{(

1 − 1
q

)
q M+D/2, if D ≡ 0 (mod 2),

0, if D ≡ 1 (mod 2).

We are now ready to estimate the average value of ρm(t2).

Lemma 5. Assume that m and t ∈ A are monic and relatively prime. Then we have∑
deg m=M

∑
deg t=T

ρm(t2) = q M+T + O(q M/2+T ).

Proof. Since ρm(·) is multiplicative and ρm(pα) = ρm(p) for any irreducible p ∈ A and
α ≥ 1, we have the following product to sum formula for ρm(t2).

ρm(t2) = ρm(t) =
∏
p|t

(
1 +

(m

p

))
=

∑
d|t

μ2(d)
(m

d

)
.

We derive our result by showing that the main contribution in the above sum comes
from d = 1. For d = 1, the sum over t , we are interested in∑

deg t=T
(t,m)=1

1 =
∑

deg t=T
s|t

∑
s|m

μ(s) =
∑
s|m

μ(s)
∑

deg t=T
s|t

1

=
∑
s|m

μ(s)
∑

l
ls=t

1 =
∑
s|m

μ(s)
∑

l
deg l=T −deg s

1

=
∑
s|m

μ(s)qT −deg s = qT
∏
p|m

(
1 − 1

qdeg p

)

= qT φ(m)

|m| = qT −Mφ(m).
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Now summing over m, and using Proposition 2.7 of [23] we have

qT −M
∑

deg m=M

φ(m) = qT −M · q2M
(

1 − 1

q

)
.

Thus the contribution from d = 1 is indeed � q M+T .
We next demonstrate that the contribution from d �= 1 is O(q M/2+T ). The sum we seek

to bound is ∑
deg m=M

∑
deg t=T
(t,m)=1

∑
d|t

d �=1

μ2(d)
(m

d

)
.

Let us denote deg d by Z . We split the above sum into 1 ≤ Z ≤ M and Z ≥ M + 1,
where M = deg m. The sum corresponding to 1 ≤ Z ≤ M (after changing the order of
summation) is∑

deg t=T
(t,m)=1

∑
d|t

Z≤M

μ2(d)
∑

deg m=M

(m

d

)
.

Observe that if d is a square then μ2(d) = 0, and if d is not a square, then from quadratic
reciprocity law we have(m

d

)( d

m

)
= (−1)

q−1
2 (deg m)(deg d)sgn(m)deg d = (−1)

q−1
2 M Z .

Since d �= 1, Lemma 4 implies that

∑
deg m=M

(m

d

)
= (−1)

q−1
2 M Z

∑
deg m=M

( d

m

)
= 0

for deg d = Z ≤ M . So the sum over 1 ≤ Z ≤ M is 0.
Consider the sum over Z ≥ M + 1,

∑
deg m=M

∑
deg t=T
(t,m)=1

∑
d|t

M+1≤Z≤T

μ2(d)
(m

d

)

=
∑

deg m=M

∑
M+1≤Z≤T

∑
deg d=Z
(d,m)=1

μ2(d)
(m

d

)
qT −Z

= qT
∑

M+1≤Z≤T

q−Z
∑

deg m=M

∑
deg d=Z
(d,m)=1

μ2(d)
(m

d

)
.

Since
(m

d

) = 0 when (d, m) �= 1, we can ignore the condition (d, m) = 1 in the above
summation. Let us denote the inner sum by

S :=
∑

deg m=M

∑
deg d=Z

μ2(d)
(m

d

)
.
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We write d = l2s. Further without loss of generality, we assume that l and s are monic.
Observe that for monic d and m we have by quadratic reciprocity law that(m

d

)( d

m

)
= (−1)

q−1
2 (deg m)(deg d) = (−1)

q−1
2 M Z .

Noting that d = l2s we have from above that(m

d

)( s

m

)
= (−1)

q−1
2 M Z .

Similarly, for monic m and s we have(m

s

)( s

m

)
= (−1)

q−1
2 (deg m)(deg s) = (−1)

q−1
2 M(Z−2 deg l) = (−1)

q−1
2 M Z ,

since q is odd. Therefore,
(

m
d

)
=

(
m
s

)
. Now using

∑
l2|d μ(d) = μ2(d), we have

S =
∑

deg m=M

∑
deg d=Z

∑
l2|d

μ(l)
(m

s

)

=
∑

deg m=M

∑
deg l≤ Z

2

μ(l)
∑

deg s=Z−2 deg l

(m

s

)

If deg l = Z/2, then s = 1. For such l, the corresponding contribution in S is∑
deg m=M

∑
deg l= Z

2

μ(l).

For Z ≥ 2, the sum
∑

deg l= Z
2

μ(l) is zero by Lemma 3. Since Z ≥ M +1 > 2, we deduce
that the contribution in S corresponding to s = 1 is 0. Therefore,

S =
∑

deg m=M

∑
deg l< Z

2

μ(l)
∑

deg s=Z−2 deg l
s �=1

(m

s

)

=
∑

deg l< Z
2

μ(l)
∑

deg m=M

∑
deg s=Z−2 deg l

s �=1

(m

s

)
,

which is

≤
∑

deg l< Z
2

∣∣∣∣ ∑
deg m=M

∑
deg s=Z−2 deg l

s �=1

(m

s

)∣∣∣∣. (14)

Observe that since m satisfies equation (2), and since we have assumed that deg f and g
are odd in (2), m cannot be a square in A. Also deg m = M > 1 implies that m /∈ F

×
q .

Thus appealing to the first part of Lemma 4 we deduce that if M ≤ Z − 2 deg l, then∑
deg s=Z−2 deg l

s �=1

(m

s

)
= 0,
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while if M ≥ Z − 2 deg l, then from the second part of Lemma 4 we have∑
deg m=M

∑
deg s=Z−2 deg l

s �=1

(m

s

)
≤

(
1 − 1

q

)
q

Z
2 −deg l+M .

Summing over l in (14) we deduce that S ≤ q M+ Z
2 . Thus the contribution from d �= 1

is less than

q M+T
∑

Z≥M+1

q−Z/2 = q M+T q− M+1
2

(
1 − 1√

q

)−1 = O(q M/2+T ).

This completes the proof of the lemma. �

As an immediate consequence of Lemma 5, from (13) we have

N1 � q M+N−T + o(q M+ L
3 + 2T

3 ).

Estimation of N2. In order to estimate N2, once again, we fix m and t and count the

number of n with deg n = N such that n2−mg

t2 divisible by p2 for some prime p with

log L < deg p ≤ Q = L−T +2 log L
3 . Therefore the sum over n that we seek is∑

log L<deg p≤Q

∑
deg n=N

n2≡mg(mod p2t2)

1. (15)

Following the same line of argument as in the estimation of N1 we deduce that the sum in
(15) is equal to

∑
log L<deg p≤Q

(q N ρm(p2t2)

|p2t2| + O(ρm(p2t2)
)
. (16)

Since ρm(p/(p, t)) ≤ 2, the main term in (16) is

q N−2T ρm(t2)
∑

log L<deg p≤Q

ρm(p/(p, t))

|p|2

≤ q N−2T ρm(t2)
∑

log L≤deg p≤Q

2

|p|2 = 2q N−2T ρm(t2)

Q∑
Y=log L

∑
deg p=Y

1

|p|2

= 2q N−2T ρm(t2)

Q∑
Y=log L

q−2Y
∑

deg p=Y

1 = 2q N−2T ρm(t2)

Q∑
Y=log L

q−2Y π(Y )

≤ 2q N−2T ρm(t2)

Q∑
Y=log L

q−2Y qY /Y

≤ 2q N−2T ρm(t2)

log L

Q∑
Y=log L

q−Y ≤ 2q N−2T ρm(t2)

q log L log L

(
1 − 1

q

)−1

= 2q N−2T ρm(t2)

L log L

(
1 − 1

q

)−1 � q N−2T ρm(t2)

L
.
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From

ρm(p2t2) = ρm(t2)ρm(p2/(p, t)2) = ρm(t2)ρm(p/(p, t)) ≤ 2ρm(t2),

we deduce that the remainder term in (16) is

O

⎛
⎝ρm(t2)

∑
log L<deg p≤Q

1

⎞
⎠ . (17)

Now,

∑
log L<deg p≤Q

1 ≤
Q∑

D=log L

q D

D
.

It can be easily seen that

Q∑
D=log L

q D

D
� q Q/Q.

Now,

q Q

Q
= q L/3q−T/3q2 log L/3

L
3 − T

3 + 2 log L
3

= 3q L/3q−T/3L2/3

L(1 − T
L + 2 log L

L )
.

In the end we will take T to be a constant (< 1) multiple of L . For such choice of T , we
have from above that

q Q

Q
� q L/3q−T/3L−1/3 = o(q L/3q−T/3).

Using this estimate in (17) we deduce that the remainder term in (16) is o(q L/3

q−T/3ρm(t2)).
Therefore the sum over n in (15) is

∑
log L<deg p≤Q

∑
deg n=N

n2≡mg(mod p2t2)

1 � q N−2T ρm(t2)

L
+ o(q L/3q−T/3ρm(t2)).

(18)

Summing over all monic m and t in (18) with deg m = M and deg t = T , and using
Lemma 5 we get

N2 � q M+N−T

L
+ o(q M+ L

3 + 2T
3 ).

Estimation of N3. If (m, n, t) is a tuple counted in N3, then

n2 − mg = βp2t2, (19)

for some monic prime p with deg p > Q and some β ∈ A. Clearly, deg β < L − 2Q =
(L + 2T − 4 log L)/3. As m, n and t are monic and pairwise relatively prime, for fixed
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m and β with deg m = M , and deg β < L − 2Q, the number of monic n and t satisfying
(19) is bounded by the number of solutions to the equation

mg = x2 − βy2 (20)

with x and y monic and co-prime. Assuming that such x and y exists, the ideal (m)g

factors in A[√β] as

mg = (x + y
√

β)(x − y
√

β).

Working similarly as in Proposition 1, it can be seen that any common factor of the ideals
(x + y

√
β) and (x − y

√
β) contains mg and x . But (mg, x) = 1 as x and y are co-prime,

hence any common factor of (x + y
√

β) and (x − y
√

β) must be the whole ring A[√β].
Therefore the ideals (x + y

√
β) and (x − y

√
β) are co-prime. From unique factorization

of ideals of A[√β] we have

(x + y
√

β) = ag and (x − y
√

β) = āg,

for some ideal a and its conjugate ā in A[√β]. Thus the number of solutions in x and y
to (20) is bounded by the number of factorizations of the ideal (m) into the product aā.
It can be easily verified that the number of such factorizations of the ideal (m) in A[√β]
is ≤ d(m). Thus for fixed m and β, the number of choices for n and t satisfying (19) is
≤ d(m). From Proposition 2.5 of [23] it follows that

∑
m-monic

deg m=M
d(m) = q M (M + 1).

Therefore N3 is ≤ (number of choices of β)
(∑

m-monic
deg m=M

d(m)
)

which is

≤ (1 + q + q2 + · · · + q L−2Q)
∑

m-monic
deg m=M

d(m)

= (q L−2Q+1 − 1)

q − 1
q M (M + 1)

≤ q L−2Q+1q M (M + 1)

= q · q(L+2T −4 log L)/3q M (M + 1)

= q L/3q2T/3q M q L−4/3(M + 1).

Noting from (3) that M < L , we conclude

N3 ≤ q L/3q2T/3q M q L−4/3(M+1)≤q L/3q2T/3q M q L−1/3 = o(q M+ L
3 + 2T

3 ),

as desired.

5. Proof of Lemma 2

Let S denote the set of monic tuples (m1, n1, t1; m2, n2, t2) such that
n2

1 − mg
1

t2
1

=
n2

2 − mg
2

t2
2

with deg mi = M , deg ni = N , deg ti = T ; (mi , ni ) = (mi , ti ) = 1, and

(m1, n1, t1) �= (m2, n2, t2). It can be seen that for a square-free f , if (m1, n1, t1) and
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(m2, n2, t2) are solutions to equation (2) of § 3, then (m1, n1, t1; m2, n2, t2) ∈ S. For a
fixed square-free f , the number of such tuples is R( f )

(
R( f ) − 1

)
. Thus

∑
deg f =L

R( f )
(
R( f ) − 1

) ≤ |S|.

For (m1, n1, t1; m2, n2, t2) ∈ S we have

t2
2 (n2

1 − mg
1) = t2

1 (n2
2 − mg

2).

Rearranging we have

(t1n2 + t2n1)(t1n2 − t2n1) = t2
1 mg

2 − t2
2 mg

1 .

Since deg(t2
1 mg

2 − t2
2 mg

1) ≤ Mg + 2T < 3L , for a fixed m and t , the number of choices
for n1 and n2 is bounded by d(t2

1 mg
2 − t2

2 mg
1), provided t2

1 mg
2 �= t2

2 mg
1 . However, if

t2
1 mg

2 = t2
2 mg

1 , then from (mi , ti ) = 1 and since g is odd, we have t1 = t2, m1 = m2,
and consequently n1 = n2, contradicting the fact that (m1, n1, t1) �= (m2, n2, t2). Now
d(t2

1 mg
2 − t2

2 mg
1) = O(qεL).

Thus summing over mi and ti for i = 1, 2 we have∑
deg f =L

R( f )
(
R( f ) − 1

) ≤
∑

deg mi =M

∑
deg ti =T

d(t2
1 mg

2 − t2
2 mg

1)

� qεL
∑

deg mi =M

∑
deg ti =T

1

= qεL+2M+2T .

6. Proof of Theorem 1

In this section we first determine a suitable optimal value of the parameter T so that the
inequality (6) is justified.

Substituting the values of M and N from (3) in (6) and rearranging the terms we obtain

T/L ≥ (g − 2)

4(g + 1)
− εg

2(g + 1)
. (21)

Thus in view of (21), the obvious optimal choice for T/L is

T/L = g − 2

4(g + 1)
.

Therefore we take

T = L(g − 2)

4(g + 1)
. (22)

Now substituting the value of T from (22) in (7), we conclude that the number of solutions
to equation (2) is

� q L( 1
2 + 3

2(g+1)
−ε)

.
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Therefore, it follows from Proposition 1 that

Ng(L) � q L( 1
2 + 3

2(g+1)
−ε)

,

and this completes the proof of the Theorem 1.
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