Multiplier convergent series and uniform convergence of mapping series

HAO GUO^{1,*} and RONGLU LI²

¹Robotics and Microsystems Center, Soochow University, Suzhou 215021, China ²Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China *Corresponding author. E-mail: hitguohao@gmail.com

MS received 14 April 2011; revised 17 November 2012

Abstract. In this paper, we introduce the frame property of complex sequence sets and study the uniform convergence of nonlinear mapping series in β -dual of spaces consisting of multiplier convergent series.

Keywords. Multiplier convergent series; mapping series.

1. Introduction

Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, $\lambda \subseteq \mathbb{C}^{\mathbb{N}}$ and $(X, \|\cdot\|)$ be a Banach space over \mathbb{K} . A series $\sum_{j=1}^{\infty} x_j$ in X is said to be λ -multiplier convergent if the series $\sum_{j=1}^{\infty} t_j x_j$ converges for each $(t_j) \in \lambda$. For example, $\{0, 1\}^{\mathbb{N}}$ -multiplier convergent is just the subseries convergent: $\sum_{k=1}^{\infty} x_{j_k}$ converges for each $j_1 < j_2 < \cdots$ and l^{∞} -multiplier convergent is just the bounded multiplier convergent: $\sum_{j=1}^{\infty} t_j x_j$ converges for each bounded complex sequences (t_j) , where $l^{\infty} = \{(t_j) \in \mathbb{C}^{\mathbb{N}} : \sup_{j \in \mathbb{N}} |t_j| < +\infty\}$.

There are many results about multiplier convergent series, see, for example [1, 4, 6–8]. Now, we only list a famous one which is known as Orlicz–Pettis theorem [7]: a series $\sum_{j=1}^{\infty} x_j$ which is subseries convergent in the weak topology is actually subseries convergent in the norm topology.

We denote the vector-valued sequence set consisting of λ -multiplier convergent series by

.

$$MC_{\lambda}(X) = \left\{ (x_j) \in X^{\mathbb{N}} : \sum_{j=1}^{\infty} t_j x_j \text{ converges for each } (t_j) \in \lambda \right\}$$

As we know, the study of β -dual of sequence spaces is an interesting topic in analysis [2, 3, 6]. For topological vector space *E*, the β -dual of $MC_{\lambda}(X)$, which drop the linearity restriction on mappings [2], is denoted by

$$MC_{\lambda}(X)^{\beta E} = \left\{ (A_j) \subseteq E^X : \sum_{j=1}^{\infty} A_j(x_j) \text{ converges for each } (x_j) \in MC_{\lambda}(X) \right\}.$$

In this paper, we study an important problem on β -dual of spaces consisting of multiplier convergent series, that is, for mapping series (A_j) in β -dual of $MC_{\lambda}(X)$, we determine the largest $\mathscr{M} \subseteq 2^{MC_{\lambda}(X)}$ for which $\sum_{j=1}^{\infty} A_j(x_j)$ converges uniformly with respect to (x_j) in any $M \in \mathscr{M}$. Moreover, in the last section we give some applications for mapping series.

2. The space of multiplier convergent series

First, we define the frame property of complex sequence set λ , which is important in studying multiplier convergent series.

DEFINITION 2.1

The sequence set $\lambda \in \mathbb{C}^{\mathbb{N}}$ is said to have the frame property, if there is a nonempty subset $\lambda_0 \subseteq \lambda$ such that the following hold. Moreover, λ_0 is said to be a frame subset of λ .

- (1) For every integer sequences $m_1 < n_1 < m_2 < n_2 < \ldots$ and $(t_{kj}) \in \lambda_0, k \in \mathbb{N}$, there exists a $t_0 \in \mathbb{C}$, define $t_j = t_{kj}$ when $m_k \leq j \leq n_k, k = 1, 2, \ldots$, and otherwise $t_j = t_0$. Then $(t_j) \in \lambda$.
- (2) For every $(t_j) \in \lambda$, there exist finitely many $a_1, a_2, \ldots, a_n \in \mathbb{K}$ and $(s_{1j}), (s_{2j}), \ldots, (s_{nj}) \in \lambda_0$, such that $(t_j) = \sum_{i=1}^n a_i(s_{ij})$.
- (3) For every $i \in \mathbb{N}$, there exists $(t_{ij}) \in \lambda_0$ such that $t_{ii} \neq 0$.
- (4) For every $i \in \mathbb{N}$, there exists $b_i > 0$ such that $|t_i| \le b_i$ for all $(t_i) \in \lambda_0$.

The following examples, which are related to the subseries convergent series $MC_{\{0,1\}^{\mathbb{N}}}(X)$ and bounded multiplier convergent series $MC_{l^{\infty}}(X)$, indicate that $\{0,1\}^{\mathbb{N}}$ and l^{∞} have the frame property:

Example 2.1. $\{0, 1\}^{\mathbb{N}} \subseteq \mathbb{C}^{\mathbb{N}}$ is a frame subset of itself.

Example 2.2. $B_{l^{\infty}} = \{(t_j) \in \mathbb{C}^{\mathbb{N}} : \sup_{j \in \mathbb{N}} |t_j| \le 1\}$ is a frame subset of l^{∞} .

If λ has a frame subset λ_0 , for each $(x_i) \in MC_{\lambda}(X)$, denote

$$\|(x_j)\|_{\lambda_0} = \sup_{(t_j)\in\lambda_0, n\in\mathbb{N}} \left\|\sum_{j=1}^n t_j x_j\right\|$$

Before the study of $\|\cdot\|_{\lambda_0}$, we need a proposition of frame subset.

PROPOSITION 2.1

Let $(x_j) \in X^{\mathbb{N}}$. If λ has a frame subset λ_0 , and $(x_j) \in MC_{\lambda}(X)$. Then $\sum_{j=1}^{\infty} t_j x_j$ converges uniformly for all $(t_j) \in \lambda_0$.

Proof. Suppose that the convergence of $\sum_{j=1}^{\infty} t_j x_j$ is not uniform for $(t_j) \in \lambda_0 \subseteq \lambda$, that is, there is an $\varepsilon > 0$ such that for every $m_0 \in \mathbb{N}$ we have $m > m_0$ and $(s_j) \in \lambda_0$

for which $\|\sum_{j=m}^{\infty} s_j x_j\| \ge \varepsilon$. Hence, there exist $m_1 > 1$ and $(t_{1j}) \in \lambda_0$ such that $\|\sum_{j=m_1}^{\infty} t_{1j} x_j\| \ge \varepsilon$. Since there is an $n_1 > m_1$ such that $\|\sum_{j=n_1+1}^{\infty} t_{1j} x_j\| < \varepsilon/2$, we have that $\|\sum_{j=m_1}^{n_1} t_{1j} x_j\| > \varepsilon/2$. By induction we get an integer sequence $m_1 < n_1 < m_2 < n_2 < \cdots$ and $\{(t_{kj}) : k \in \mathbb{N}\} \subseteq \lambda_0$ such that $\|\sum_{j=m_k}^{n_k} t_{kj} x_j\| > \varepsilon/2$ for all $k \in \mathbb{N}$. By Definition 2.1(1), there is a $t_0 \in \mathbb{C}$. Let

$$t_j = \begin{cases} t_{kj}, & m_k \le j \le n_k, k = 1, 2, \dots, \\ t_0, & \text{otherwise.} \end{cases}$$

Then $(t_j) \in \lambda$. However, $\sum_{j=1}^{\infty} t_j x_j$ diverges.

Now, if λ has a frame subset λ_0 , we will prove that $\|\cdot\|_{\lambda_0}$ is a norm on $MC_{\lambda}(X)$, moreover, $(MC_{\lambda}(X), \|\cdot\|_{\lambda_0})$ is complete.

Theorem 2.1. $(MC_{\lambda}(X), \|\cdot\|_{\lambda_0})$ is a Banach space for each frame subset λ_0 of λ .

Proof. Let $\varepsilon > 0$ and $(x_j) \in MC_{\lambda}(X)$. By Proposition 2.1, there is an $n_0 \in \mathbb{N}$ such that $\|\sum_{j=n}^{m} t_j x_j\| < \varepsilon$ for all $n > m > n_0$ and $(t_j) \in \lambda_0$. It follows from Definition 2.1(4), for $i = 1, 2, ..., n_0$, there exists $b_i > 0$ such that $|t_i| \le b_i$ for all $(t_j) \in \lambda_0$. Hence, $\|\sum_{j=1}^{n} t_j x_j\| < \sum_{j=1}^{n_0} b_j \|x_j\| + \varepsilon$ for all $n \in \mathbb{N}$ and $(t_j) \in \lambda_0$, that is, $\|\cdot\|_{\lambda_0} : MC_{\lambda}(X) \to [0, +\infty)$.

It is easy to verify that $||(x_j) + (y_j)||_{\lambda_0} \le ||(x_j)||_{\lambda_0} + ||(y_j)||_{\lambda_0}$ and $||t(x_j)||_{\lambda_0} = |t|||(x_j)||_{\lambda_0}$. Next, if $||(x_j)||_{\lambda_0} = 0$, then $\sum_{j=1}^n t_j x_j = 0$ for all $n \in \mathbb{N}$ and $(t_j) \in \lambda_0$. By Definition 2.1(3), for $i \in \mathbb{N}$, there exists $(t_{ij}) \in \lambda_0$ such that $t_{ii} \ne 0$. Pick $n = 1, t_{11}x_1 = 0$ implies that $x_1 = 0$. Moreover, pick $n = 2, t_{21}x_1 + t_{22}x_2 = 0 + t_{22}x_2 = 0$, then $x_2 = 0$. By induction we have that $(x_j) = 0$. It was proved that $|| \cdot ||_{\lambda_0}$ is a norm on $MC_{\lambda}(X)$.

Let $(x_{nj}), n \in \mathbb{N}$ be Cauchy in $(MC_{\lambda}(X), \|\cdot\|_{\lambda_0})$. Hence, there exists an $m_0 \in \mathbb{N}$ such that $\|\sum_{j=1}^{k} t_j x_{nj} - \sum_{j=1}^{k} t_j x_{mj}\| < \varepsilon/3$ for all $n > m > m_0, k \in \mathbb{N}$ and $(t_j) \in \lambda_0$. Since *X* is complete, there exist $y_{k,(t_j)} \in X$ and $n_1 \in \mathbb{N}$ such that

$$\left\|\sum_{j=1}^{k} t_j x_{nj} - y_{k,(t_j)}\right\| < \varepsilon/3, \forall n > n_1, k \in \mathbb{N}, (t_j) \in \lambda_0.$$

$$\tag{1}$$

By Proposition 2.1, for every $n \in \mathbb{N}$, there exists $k_0 \in \mathbb{N}$ such that $\|\sum_{j=1}^k t_j x_{nj} - \sum_{j=1}^p t_j x_{nj}\| < \varepsilon/3$ for all $k > p > k_0$ and $(t_j) \in \lambda_0$. Pick $n > n_1$, $\|y_{k,(t_j)} - y_{p,(t_j)}\| < \varepsilon$ for all $k > p > k_0$ and $(t_j) \in \lambda_0$. Since X is complete, $y_{k,(t_j)}$ converges uniformly for $(t_j) \in \lambda_0$, when $k \to +\infty$.

By Definition 2.1(3), for $i \in \mathbb{N}$, there exists $(t_{ij}) \in \lambda_0$ such that $t_{ii} \neq 0$. Hence, $|t_{ii}| ||x_{ni} - x_{mi}|| \leq ||\sum_{j=1}^{i} t_{ij}(x_{nj} - x_{mj})|| + ||\sum_{j=1}^{i-1} t_{ij}(x_{nj} - x_{mj})|| < 2\varepsilon/3$ for all $n > m > m_0$. Since X is complete, there exists an $(z_j) \in X^{\mathbb{N}}$ such that $\lim_n ||x_{nj} - z_j|| = 0$ for all $j \in \mathbb{N}$.

Let $(t_j) \in \lambda_0$ and $k \in \mathbb{N}$ be arbitrary. There is a $n_2 > n_1$ such that $||x_{n_j} - z_j|| < \varepsilon$ for all $n > n_2$ and j = 1, 2, ..., k. Hence, $||\sum_{j=1}^k t_j z_j - y_{k,(t_j)}|| \le ||\sum_{j=1}^k t_j (z_j - x_{n_j})|| + ||\sum_{j=1}^k t_j x_{n_j} - y_{k,(t_j)}|| < (\sum_{j=1}^k |t_j|)\varepsilon + \varepsilon$. This implies that $\sum_{j=1}^k t_j z_j = y_{k,(t_j)}$ for all $(t_j) \in \lambda_0$ and $k \in \mathbb{N}$. By (1), $\lim_n ||(x_{n_j}) - (z_j)||_{\lambda_0} = 0$.

Finally, let $(t_j) \in \lambda$. By Definition 2.1(2), there exist $a_1, a_2, \ldots, a_n \in \mathbb{K}$ and $(s_{1j}), (s_{2j}), \ldots, (s_{nj}) \in \lambda_0$, such that $(t_j) = \sum_{i=1}^n a_i(s_{ij})$. Hence, $\sum_{j=1}^k t_j z_j = \sum_{i=1}^n a_i y_{k,(s_{ij})}$. Since $y_{k,(s_{ij})}$ converges when $k \to +\infty$, we have that $(z_j) \in MC_{\lambda}(X)$. Now, we prove that $MC_{\lambda}(X)$ is complete.

3. Main theorem

In the following sections, we only care about the λ which has at least one frame subset λ_0 , for example, $\lambda = \{0, 1\}^{\mathbb{N}}$ or l^{∞} , etc. First, we discuss the totally bounded subsets of $(MC_{\lambda}(X), \|\cdot\|_{\lambda_0})$, where λ_0 is any frame subset of λ . Recall that a subset *B* of a topological vector space *E* is totally bounded or precompact if for every neighborhood *U* of $0 \in E$ there is a finite subset $F \subseteq E$ such that $B \subseteq F + U$ (p. 83 of [9]).

PROPOSITION 3.1

Let *M* be a totally bounded subset of $(MC_{\lambda}(X), \|\cdot\|_{\lambda_0})$. Then $\lim_n \|\sum_{j=n}^{\infty} t_j x_j\| = 0$ uniformly for $(x_j) \in M$ and $(t_j) \in \lambda_0$.

Proof. Let $\varepsilon > 0$ be arbitrary and let $U = \{(u_j) \in MC_{\lambda}(X) : ||(u_j)||_{\lambda_0} < \varepsilon/3\}$. Since M is totally bounded, there is a finite subset $F = \{(z_{ij}) : i = 1, 2, ..., n\} \subseteq MC_{\lambda}(X)$ such that $M \subseteq F + U$. By Proposition 2.1, there exists an $n_0 \in \mathbb{N}$ such that $||\sum_{j=m}^{n} t_j z_{ij}|| < \varepsilon/3$ for all $n, m > n_0, i = 1, 2, ..., n$ and $(t_j) \in \lambda_0$. Moreover, $||\sum_{j=m}^{n} t_j u_j|| \le ||\sum_{j=1}^{n} t_j u_j|| + ||\sum_{j=1}^{m-1} t_j u_j|| < 2\varepsilon/3$ for all $n, m > n_0, (u_j) \in U$ and $(t_j) \in \lambda_0$. Hence, $||\sum_{j=m}^{n} t_j x_j|| \le ||\sum_{j=m}^{n} t_j z_{i0j}|| + ||\sum_{j=m}^{n} t_j u_j|| < \varepsilon$ for all $n, m > n_0, (x_j) \in M$ and $(t_j) \in \lambda_0$.

However, the converse is not always true.

Example 3.1. Let $M = \{(kx, 0, 0, ...) : k \in \mathbb{N}\}$ where $0 \neq x \in X$. In fact, $M \subseteq MC_{\lambda}(X)$ and $\lim_{n} \|\sum_{j=n}^{\infty} t_{j}x_{j}\| = 0$ uniformly for $(x_{j}) \in M$ and $(t_{j}) \in \lambda_{0}$, but there is a $(t_{1j}) \in \lambda_{0}$ such that $t_{11} \neq 0$. Pick $(x_{j}) = (kx, 0, 0, ...) \in M$, we have $\|(x_{j})\|_{\lambda_{0}} = k\|t_{11}x\|$. Hence, M is not totally bounded.

Now, based on the proposition of totally bounded sets, we characterize the uniform convergence of mapping series in β -dual of $MC_{\lambda}(X)$.

Theorem 3.1. Let $M \subseteq MC_{\lambda}(X)$ and λ_0 be a frame subset of λ . Then the following are equivalent:

- (I) $\lim_{n \to \infty} \|\sum_{j=n}^{\infty} t_j x_j\| = 0$ uniformly for $(x_j) \in M$ and $(t_j) \in \lambda_0$.
- (II) For every Fréchet space E and $(A_j) \in MC_{\lambda}(X)^{\beta E}$, $\sum_{j=1}^{\infty} A_j(x_j)$ converges uniformly for $(x_j) \in M$.

Proof.

(I) \implies (II). If (II) fails, there is a Fréchet space $(E, p(\cdot))$ and $(A_j) \in MC_{\lambda}(X)^{\beta E}$ such that the convergence of $\sum_{j=1}^{\infty} A_j(x_j)$ is not uniform for $(x_j) \in M$. Hence, there is an

 $\varepsilon > 0$ such that for every $m_0 \in \mathbb{N}$ we have $n > m > m_0$ and $(x_j) \in M$ for which $p(\sum_{j=m}^n A_j(x_j)) > \varepsilon$.

By (I), there is a $j_1 \in \mathbb{N}$ such that $\|\sum_{j=n}^{\infty} t_j z_j\| < 1/2$ for all $(z_j) \in M$, $n > j_1$ and $(t_j) \in \lambda_0$. Then, there exist $n_1 > m_1 > j_1$ and $(x_{1j}) \in M$ such that $p(\sum_{j=m_1}^{n_1} A_j(x_{1j})) > \varepsilon$ and $\|\sum_{j=m_1}^{n_1} t_j x_{1j}\| < 1/2$ for all $(t_j) \in \lambda_0$. Pick $j_2 > n_1$ for which $\|\sum_{j=n}^{\infty} t_j z_j\| < 1/2^2$ for all $(z_j) \in M$, $n > j_2$ and $(t_j) \in \lambda_0$. Then, there exist $n_2 > m_2 > j_2$ and $(x_{2j}) \in M$ such that $p(\sum_{j=m_2}^{n_2} A_j(x_{2j})) > \varepsilon$ and $\|\sum_{j=m_2}^{n_2} t_j x_{2j}\| < 1/2^2$ for all $(t_j) \in \lambda_0$. Continuing this construction produces an integer sequence $m_1 < n_1 < m_2 < n_2 < \cdots$ and $\{(x_{kj}) : k \in \mathbb{N}\} \subseteq M$ such that

$$p\left(\sum_{j=m_k}^{n_k} A_j(x_{kj})\right) > \varepsilon$$
 and $\left\|\sum_{j=m_k}^{n_k} t_j x_{kj}\right\| < 1/2^k, \forall (t_j) \in \lambda_0, k \in \mathbb{N}$

Let

$$x_j = \begin{cases} x_{kj}, & m_k \le j \le n_k, k = 1, 2, \dots, \\ 0, & \text{otherwise.} \end{cases}$$

For every $(t_j) \in \lambda$, it follows from Definition 2.1(2) that there exist a_1, a_2, \ldots , $a_n \in \mathbb{K}$ and $(s_{1j}), (s_{2j}), \ldots, (s_{nj}) \in \lambda_0$ such that $(t_j) = \sum_{i=1}^n a_i(s_{ij})$. Hence, $\sum_{j=1}^{\infty} t_j x_j = \sum_{i=1}^n a_i \sum_{k=1}^{\infty} \sum_{j=m_k}^{n_k} s_{ij} x_{kj}$. Since $\sum_{k=1}^{\infty} 1/2^k = 1$ and X is complete, $\sum_{k=1}^{\infty} \sum_{j=m_k}^{n_k} s_{ij} x_{kj}$ converges for each $i = 1, 2, \ldots, n$. Then, $(x_j) \in MC_{\lambda}(X)$. However, $\sum_{i=1}^{\infty} A_j(x_j)$ diverges which contradicts $(A_j) \in MC_{\lambda}(X)^{\beta E}$.

(II) \Longrightarrow (I). If (I) fails, there exist $\varepsilon > 0$, $m_1 < n_1 < m_2 < n_2 < \cdots$, $\{(x_{kj}) : k \in \mathbb{N}\} \subseteq M$ and $\{(t_{kj}) : k \in \mathbb{N}\} \subseteq \lambda_0$ such that $\|\sum_{j=m_k}^{n_k} t_{kj} x_{kj}\| > \varepsilon$ for all $k \in \mathbb{N}$.

For each $j \in \mathbb{N}$ define $A_j : X \to MC_{\lambda}(X)$ by $A_j(x) = (0, \dots, 0, x^{(j)}, 0, \dots)$ for all $x \in X$. For every $(x_j) \in MC_{\lambda}(X)$, it follows from Proposition 2.1 that

$$\lim_{n} \left\| \sum_{j=1}^{n} A_{j}(x_{j}) - (x_{j}) \right\|_{\lambda_{0}} = \lim_{n} \| (0, \dots, 0, x_{n+1}, x_{n+2}, \dots) \|_{\lambda_{0}}$$
$$= \lim_{n} \sup_{(t_{j}) \in \lambda_{0}, k \in \mathbb{N}} \left\| \sum_{j=n+1}^{n+k} t_{j} x_{j} \right\| = 0.$$

Then, $(A_i) \in MC_{\lambda}(X)^{\beta E}$, where $E = MC_{\lambda}(X)$ is a Banach space. However,

$$\left\|\sum_{j=m_k}^{n_k} A_j(x_{kj})\right\|_{\lambda_0} = \|\left(0,\ldots,0,x_{km_k},x_{kn_k},\ldots\right)\|_{\lambda_0}$$
$$= \sup_{(t_j)\in\lambda_0,n\in\mathbb{N}} \left\|\sum_{j=m_k}^{m_k+n} t_j x_{kj}\right\| \ge \left\|\sum_{j=m_k}^{n_k} t_j x_{kj}\right\| > \varepsilon.$$

This contradicts (II).

4. Applications

Let *X*, *Y* be Banach spaces, $\lambda \subseteq \mathbb{C}^{\mathbb{N}}$ which has a frame subset λ_0 , and

$$\mathscr{M}_{\lambda,\lambda_0} = \left\{ M \subseteq MC_{\lambda}(X) : \lim_{n} \| \sum_{j=n}^{\infty} t_j x_j \| = 0 \text{ uniformly for } (x_j) \in M \text{ and } (t_j) \in \lambda_0 \right\}.$$

By Proposition 3.1, any totally bounded subset of $MC_{\lambda}(X)$ belongs to $\mathcal{M}_{\lambda,\lambda_0}$.

The Banach–Steinhaus theorem says that if the linear operator $T_n : X \to Y$ is continuous and $\lim_n T_n(x) = T(x)$ at each $x \in X$, then $T : X \to Y$ is also linear and continuous. Moreover, $\lim_n T_n(x) = T(x)$ uniformly for x in any totally bounded subset of X (pp. 299–300 of [5]).

In general, the Banach–Steinhaus theorem fails to hold for nonlinear mappings. However, from Theorem 3.1, we directly have the following.

Theorem 4.1. If $(A_j) \in MC_{\lambda}(X)^{\beta Y}$ and $f_n[(x_j)] = \sum_{j=1}^n A_j(x_j), f[(x_j)] = \sum_{j=1}^\infty A_j(x_j)$ for $(x_j) \in MC_{\lambda}(X)$. Then $\lim_n f_n[(x_j)] = f[(x_j)]$ uniformly for (x_j) in any totally bounded subset of $MC_{\lambda}(X)$.

COROLLARY 4.1

If $(A_j) \in MC_{\lambda}(X)^{\beta Y}$ and A_j is continuous, then $\langle (A_j), (x_j) \rangle = \sum_{j=1}^{\infty} A_j(x_j)$ defines a continuous mapping $\langle (A_j), \cdot \rangle : MC_{\lambda}(X) \to Y$.

Proof. Suppose that $(x_j^{(n)}) \to (x_j)$ in $MC_{\lambda}(X)$ when $n \to +\infty$. By Definition 2.1(3), for every $k \in \mathbb{N}$, there exist $(t_{kj}) \in \lambda_0$ such that $t_{kk} \neq 0$. Hence, $||t_{kk}(x_k^{(n)} - x_k)|| \leq$ $||\sum_{j=1}^k t_{kj}(x_j^{(n)} - x_j)|| + ||\sum_{j=1}^{k-1} t_{kj}(x_j^{(n)} - x_j)|| \leq 2||(x_j^{(n)}) - (x_j)||_{\lambda_0} \to 0$, that is, $\lim_n x_k^{(n)} = x_k$ for all $k \in \mathbb{N}$. So $\lim_n \sum_{j=1}^m A_j(x_j^{(n)}) = \sum_{j=1}^m A_j(x_j)$ for all $m \in \mathbb{N}$. Since $\{(x_j^{(n)}) : n \in \mathbb{N}\}$ is totally bounded, it follows from Theorem 4.1 that $\lim_n \sum_{j=1}^m A_j(x_j^{(n)}) = \sum_{j=1}^\infty A_j(x_j^{(n)})$ uniformly with respect to $n \in \mathbb{N}$. Then, $\lim_n \sum_{j=1}^\infty A_j(x_j^{(n)}) = \lim_n \lim_n \sum_{j=1}^m A_j(x_j^{(n)}) = \lim_n \lim_n \sum_{j=1}^m A_j(x_j^{(n)})$

Finally, we suppose that λ satisfies the following condition: for any $(t_j) \in \lambda$ and $j_1 < j_2 < \cdots$, let

$$t'_{j} = \begin{cases} t_{j}, & j = j_{k}, k = 1, 2, \dots, \\ 0, & \text{otherwise.} \end{cases}$$
(2)

Then $(t'_j) \in \lambda$. For example, $\lambda = \{0, 1\}^{\mathbb{N}}$ or l^{∞} , etc. Then by the Orlicz–Pettis theorem and Theorem 3.1, we can get the following.

Theorem 4.2. If $(A_j) \subseteq Y^X$ such that $A_j(0) = 0$ for all $j \in \mathbb{N}$ and $\sum_{j=1}^{\infty} A_j(x_j)$ converges weakly at each $(x_j) \in MC_{\lambda}(X)$. Then $\sum_{j=1}^{\infty} A_j(x_j)$ converges uniformly for (x_j) in any totally bounded subset of $MC_{\lambda}(X)$.

Proof. For any $(x_j) \in MC_{\lambda}(X)$, $(t_j) \in \lambda$ and $j_1 < j_2 < \cdots$, let (t'_j) by (2) and

$$u_j = \begin{cases} x_j, & j = j_k, k = 1, 2, \dots, \\ 0, & \text{otherwise.} \end{cases}$$

Hence, $\sum_{j=1}^{n} t_j u_j = \sum_{k=1}^{n} t_{j_k} x_{j_k} = \sum_{j=1}^{n} t'_j x_j$ converges when $n \to +\infty$. Then $(u_j) \in MC_{\lambda}(X)$ so $\sum_{j=1}^{\infty} A_j(u_j)$ is weakly convergent. Since $A_j(0) = 0$ for all $j \in \mathbb{N}$, it follows from $\sum_{k=1}^{n} A_{j_k}(x_{j_k}) = \sum_{j=1}^{j_n} A_j(u_j)$ that $\sum_{k=1}^{\infty} A_{j_k}(x_{j_k})$ is weakly convergent. By the Orlicz–Pettis theorem, $\sum_{j=1}^{\infty} A_j(x_j)$ converges in *Y*. Hence, $(A_j) \in MC_{\lambda}(X)^{\beta Y}$.

Acknowledgement

This work is supported by Natural Science Foundations of China (11101108).

References

- [1] Li R and Bu Q, Locally convex spaces containing no copy of c₀, J. Math. Anal. Appl. 172 (1993) 205–211
- [2] Li R, Wang F and Zhong S, The strongest intrinsic meaning of sequential-evalution convergence, *Topology Appl.* 154 (2007) 1195–1205
- [3] Maddox I J, Infinite Matrices of Operators, Lecture Notes in Mathematics 786 (1980) (Berlin: Springer-Verlag)
- [4] Swartz C, The Schur lemma for bounded multiplier convergent series, *Math. Ann.* 263 (1983) 283–288
- [5] Swartz C, An Introduction to Functional Analysis, Pure and Applied Mathematics 157 (1992) (New York: Marcel Dekker)
- [6] Swartz C, Multiplier convergent series (2009) (Singapore: World Scientific)
- [7] Swartz C, A bilinear Orlicz-Pettis theorem, J. Math. Anal. Appl. 365 (2010) 332-337
- [8] Tao Y and Li R, Orlicz-Pettis theorem for λ-multiplier convergent operator series, Bull. Austral. Math. Soc. 75 (2007) 247–252
- [9] Wilansky A, Modern Methods in Topological Vector Spaces (1978) (New York: McGraw-Hill)