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Abstract. A dominator coloring of a graph G is a proper coloring of G in which
every vertex dominates every vertex of at least one color class. The minimum number of
colors required for a dominator coloring of G is called the dominator chromatic number
of G and is denoted by χd (G). In this paper we present several results on graphs with
χd (G) = χ(G) and χd (G) = γ (G) where χ(G) and γ (G) denote respectively the
chromatic number and the domination number of a graph G. We also prove that if μ(G)
is the Mycielskian of G, then χd (G) + 1 ≤ χd (μ(G)) ≤ χd (G) + 2.

Keywords. Dominator coloring; dominator chromatic number; chromatic number;
domination number.

1. Introduction

By a graph G = (V, E), we mean a finite, undirected graph with neither loops nor multi-
ple edges. The order and size of G are denoted by n = |V | and m = |E | respectively. For
graph theoretic terminology we refer to Chartrand and Lesniak [4].

Graph coloring and domination are two major areas in graph theory that have been
well studied. An excellent treatment of fundamentals of domination is given in the book
by Haynes et al. [13] and survey papers on several advanced topics are given in the book
edited by Haynes et al. [14].

Let G = (V, E) be a graph. Let v ∈ V . The degree of a vertex v in a graph G is
defined to be the number of edges incident with v and is denoted by deg v. A vertex
of degree zero in G is an isolated vertex and a vertex of degree one is a pendant vertex
or a leaf. Any vertex which is adjacent to a pendant vertex is called a support vertex.
The open neighborhood N (v) and the closed neighborhood N [v] of v are defined by
N (v) = {u ∈ V : uv ∈ E} and N [v] = N (v) ∪ {v}. A subset S of V is said to be an
independent set if no two vertices in S are adjacent. The independence number β0(G)

is the maximum cardinality of an independent set in G. A subset S of V is called a
dominating set of G if every vertex in V − S is adjacent to a vertex in S, in which case we
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also say that S is a dominator of V − S. The domination number γ (G) is the minimum
cardinality of a dominating set in G.

A proper coloring of a graph G is an assignment of colors to the vertices of G in such
a way that no two adjacent vertices receive the same color. The chromatic number χ(G)

is the minimum number of colors required for a proper coloring of G. The clique number
ω(G) of a graph G is the maximum order among the complete subgraphs of G. For a set
S of vertices of G, the induced subgraph is the maximal subgraph of G with vertex set S
and is denoted by 〈S〉. Thus two vertices of S are adjacent in 〈S〉 if and only if they are
adjacent in G. A graph G is called perfect if χ(H) = ω(H) for every induced subgraph
H of G.

A graph G is called a split graph if its vertex set can be partitioned into a clique and an
independent set. The corona G1 ◦ G2 of two graphs G1 and G2 is defined to be the graph
G obtained by taking one copy of G1 and |V (G1)| copies of G2, and then joining the i-th
vertex of G1 to every vertex in the i-th copy of G2.

Hedetniemi et al. [15, 16] introduced the concepts of dominator partition and dominator
coloring of a graph.

DEFINITION 1.1

A vertex v ∈ V is a dominator of a set S ⊆ V if v dominates every vertex in S. A partition
π = {V1, V2, . . . , Vk} is called a dominator partition if every vertex v ∈ V is a dominator
of at least one Vi . The dominator partition number πd(G) equals the minimum k such that
G has a dominator partition of order k. If we further require that π be a proper coloring
of G, then we have a dominator coloring of G. The dominator chromatic number χd(G)

is the minimum number of colors required for a dominator coloring of G.

Since every vertex is a dominator of itself, the partition {{v1}, {v2}, . . . , {vn}} into sin-
gleton sets is a dominator coloring. Thus, every graph of order n has a dominator coloring
of order n and therefore the dominator chromatic number χd(G) is well defined. Gera
et al. [12] also studied this concept. Some basic results on dominator colorings are given
in [5, 10–12]. In this paper we present further results on dominator colorings.

We need the following theorems.

Theorem 1.2 [10]. Let G be a connected graph of order n ≥ 2. Then χd(G) = 2 if and
only if G is a complete bipartite graph of the form Ka,b, where 1 ≤ a ≤ b ≤ n and
a + b = n.

Theorem 1.3 [10]. Let G be a connected graph of order n. Then χd(G) = n if and only
if G is the complete graph Kn .

Theorem 1.4 [5]. Let T be a tree of order n ≥ 2. Then γ (T ) + 1 ≤ χd(T ) ≤ γ (T ) + 2.

Theorem 1.5 [10]. For the cycle Cn, we have

χd(Cn) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⌈n

3

⌉
, if n = 4

⌈n

3

⌉
+ 1, if n = 5

⌈n

3

⌉
+ 2, otherwise.
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Theorem 1.6 [12]. For the path Pn, n ≥ 2, we have

χd(Pn) =

⎧
⎪⎨

⎪⎩

⌈n

3

⌉
+ 1, if n = 2, 3, 4, 5, 7

⌈n

3

⌉
+ 2, otherwise.

If {V1, V2, . . . , Vχd } is a χd -coloring of G and if vi ∈ Vi , then S = {v1, v2, . . . , vχd }
is a dominating set of G. Also if D is a γ -set of G, then C ∪ {{v} : v ∈ D} where C is
a proper coloring of G − D gives a dominator coloring of G. These observations lead to
the following bounds for χd(G).

Theorem 1.7 [10]. Let G be a connected graph. Then max{χ(G), γ (G)} ≤ χd(G) ≤
χ(G) + γ (G).

COROLLARY 1.8

For any bipartite graph G, γ (G) ≤ χd(G) ≤ γ (G) + 2.

PROPOSITION 1.9 [12]

For a connected graph G of order n ≥ 3, χd(G) ≤ n − β0(G) + 1, and this bound is
sharp.

PROPOSITION 1.10 [12]

If G is a disconnected graph with components G1, G2, . . . , Gk with k ≥ 2, then
max

i∈{1,2,...,k} χd(Gi ) + k − 1 ≤ χd(G) ≤ ∑k
i=1 χd(Gi ), and these bounds are sharp.

Observation 1.11. For any graph G, ω(G) ≤ χ(G) ≤ χd(G).

2. Basic results

Theorem 1.3 shows that the complete graph Kn is the only connected graph of order n
with χd(G) = n. We start with a simple generalization of this result.

PROPOSITION 2.1

Let G be a graph of order n. Then χd(G) = n if and only if G = Ka ∪ (n − a)K1, where
1 ≤ a ≤ n.

Proof. Suppose χd(G) = n. Clearly every component of G is complete. If G contains two
nontrivial components G1 and G2, choose u ∈ V (G1) and v ∈ V (G2). Then {{u, v}} ∪
{{x} : x ∈ V (G) − {u, v}} is a dominator coloring of G, which is a contradiction. Hence
G = Ka ∪ (n − a)K1, where 1 ≤ a ≤ n.

The converse is obvious. �

We now proceed to characterize graphs with χd(G) = n − 1.

Theorem 2.2. Let G be a connected graph of order n. Then χd(G) = n − 1 if and only
if one of the following holds:

(i) G �= Kn and Kn−1 is a subgraph of G.
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(ii) V (G) = V1 ∪ {u, v}, where 〈V1〉 = Kn−2, deg u = 1, uv ∈ E(G) and v is
nonadjacent to at least one vertex in V1.

Proof. Let G be a connected graph of order n with χd(G) = n − 1 and let V (G) =
{v1, v2, . . . , vn}. By Proposition 1.9, we have χd(G) ≤ n − β0(G) + 1 and hence
β0(G) = 2. If there exist three disjoint β0-sets, say {v1, v2}, {v3, v4} and {v5, v6},
then {{v1, v2}, {v3, v4}} ∪ {{vi } : 5 ≤ i ≤ n} is a dominator coloring of G and hence
χd(G) ≤ n − 2, which is a contradiction. Hence there exist at most two disjoint β0-sets
in G. We consider two cases.

Case i. Any two β0-sets in G are not disjoint.
Let {v1, v2} be a β0-set in G. Clearly the induced subgraph H = 〈{v3, v4, . . . , vn}〉 is

complete. We now claim that either v1 or v2 is adjacent to every vertex of H.

Suppose there exist vi , v j ∈ V (H) such that v1vi , v2v j /∈ E(G). Since β0(G) = 2,

it follows that i �= j and hence {v1, vi }, {v2, v j } are two disjoint β0-sets in G, which is
a contradiction. Hence we may assume that v2 is adjacent to every vertex in H. Hence
〈V (H) ∪ {v2}〉 is isomorphic to Kn−1 and G is of the form (i).

Case ii. There exist two disjoint β0-sets in G, say {v1, v2} and {v3, v4}.
Since χd(G) = n − 1, it follows that C = {{v1, v2}, {v3, v4}} ∪ {{vi } : 5 ≤ i ≤ n} is

not a dominator coloring of G. We may assume without loss of generality that the vertex
v1 does not dominate any color class. Hence deg v1 = 1 and let v1v3 ∈ E(G). Now
H1 = 〈{v2, v4, v5, . . . , vn}〉 = Kn−2 and hence G is of the form (ii).

Conversely, if a graph G satisfies condition (i) or (ii), it is easy to see that χd(G) =
n − 1. �

Theorem 2.3. Let G be a graph of order n. Then χd(G) = n − 1 if and only if one of the
following is true.

(i) G contains exactly one nontrivial component G1 of order n1 with χd(G1) = n1 − 1.

(ii) G contains exactly two nontrivial components say G1 and G2, where G1 =
Kn1, n1 ≥ 2 and G2 = K2.

Proof. Suppose χd(G) = n − 1 and let G1, G2, . . . , Gk be the set of all components
of G of order n1, n2, . . . , nk respectively. Now we claim that G contains at most one
noncomplete component. Suppose G1 and G2 are noncomplete. Then χd(G1) ≤ n1 − 1
and χd(G2) ≤ n2−1 and hence χd(G) ≤ ∑k

i=1 χd(Gi ) < n−1, which is a contradiction.

Case i. G1 is not complete.
Then G2, G3, . . . , Gk are complete. Let u and v be two nonadjacent vertices in G1. If

n2 ≥ 2, let w ∈ V (G2). Then {{u, v, w}}∪ {{vi } : vi �∈ {u, v, w}} is a dominator coloring
of G and hence χd(G) < n − 1, which is a contradiction. Thus G2 = G3 = · · · = Gk =
K1. Further since χd(G) = n − 1, it follows that χd(G1) = n1 − 1.

Case ii. Every component of G is complete.
It follows from Proposition 2.1 that G contains at least two nontrivial components,

say G1 and G2. We now claim that G3 = G4 = · · · = Gk = K1. If n3 ≥ 2, choose
u ∈ V (G1), v ∈ V (G2) and w ∈ V (G3). Then {{u, v, w}} ∪ {{vi } : vi �∈ {u, v, w}} is
a dominator coloring of G and hence χd(G) < n − 1, which is a contradiction. Hence
G3 = G4 = · · · = Gk = K1. Now if n1 ≥ 3 and n2 ≥ 3, choose u, v ∈ V (G1) and
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u′, v′ ∈ V (G2). Then {{u, u′}, {v, v′}}∪{{vi } : vi �∈ {u, u′, v, v′}} is a dominator coloring
of G and hence χd(G) < n − 1, which is a contradiction. Thus G is of the form (ii).

The converse is obvious. �

The next result concerns the complement Ḡ of a graph G, where V (Ḡ) = V (G) and
two vertices u and v are adjacent in Ḡ if and only if they are not adjacent in G.

Theorem 2.4. Let G be a connected graph of order n ≥ 2. Then 4 ≤ χd(G) + χd(Ḡ) ≤
2n. Further χd(G) + χd(Ḡ) = 4 if and only if G = K2 and χd(G) + χd(Ḡ) = 2n if and
only if G = Kn.

Proof. Since 2 ≤ χd(G) ≤ n, the inequalities are trivial. Also χd(G) + χd(Ḡ) = 2n if
and only if χd(G) = χd(Ḡ) = n and hence it follows from Theorem 1.3 that G = Kn .
Also χd(G) + χd(Ḡ) = 4 if and only if χd(G) = χd(Ḡ) = 2 and hence it follows from
Theorem 1.2 that G = K2.

The converse is obvious. �

PROPOSITION 2.5

Let G be a connected graph of order n. Then χd(G) + χd(Ḡ) = 2n − 1 if and only if
G = Kn − e.

Proof. Suppose χd(G) + χd(Ḡ) = 2n − 1. If χd(G) = n, then it follows from Theorem
1.3 that G = Kn and χd(Ḡ) = n, which is a contradiction. Hence χd(G) = n − 1 and
χd(Ḡ) = n. Hence it follows from Proposition 2.1 that Ḡ = K2 ∪ (n − 2)K1, so that
G = Kn − e.

The converse is obvious. �

Observation 2.6. In [11] it has been conjectured that for the n-dimensional hypercube
Qn, χd(Qn) = 2 + 2n−2. This conjecture is false. It has been proved in [1] that γ (Q7) =
16. Hence χd(Q7) ≤ γ (Q7) + χ(Q7) = 18.

3. Graphs with χd(G) = χ(G)

For any graph G, we have χd(G) ≥ χ(G). In this section we investigate graphs for
which χd(G) = χ(G). In particular, we characterize unicyclic graphs, split graphs and
complements of bipartite graphs with χd(G) = χ(G).

It follows from Theorem 1.2 that for a tree T of order n ≥ 2, χd(T ) = χ(T ) if and only
if T = K1,n−1. In the following theorem we characterize unicyclic graphs with χd = χ.

Theorem 3.1. Let G be a connected unicyclic graph. Then χd(G) = χ(G) if and only
if G is isomorphic to C3 or C4 or C5 or the graph obtained from C3 by attaching any
number of leaves at one or two vertices of C3.

Proof. Let G be a unicyclic graph with χd(G) = χ(G). Let C be the unique cycle in G.
If C is an even cycle, then χd(G) = χ(G) = 2 and hence it follows Theorem 1.2 that
G = C4. Suppose C is an odd cycle, so that χd(G) = χ(G) = 3.

Suppose there exists a support vertex v not on C . Since there exists a χd -coloring of
G in which {v} is a color class, it follows that χd(G) ≥ 4, which is a contradiction.
Hence any support vertex lies on C and any vertex not on C is a leaf. Since there exists a
χd -coloring of G in which every support vertex appears as a singleton color class, it
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follows that the number of support vertices is at most two. Hence if C is of length three,
then G is isomorphic to C3 or the graph obtained from C3 by attaching any number of
leaves at one or two vertices of C3. Suppose the length of C is at least 5. If there exists
a support vertex v on C, then there exists a χd -coloring {{v}, V1, V2} of G such that V1
contains all the leaves of G. Now, there exists a vertex w such that w ∈ V2, w lies on C
and w is not adjacent to v. Clearly w does not dominate any color class of G, which is
a contradiction. Thus G has no support vertices and hence G = C . Now, it follows from
Theorem 1.5 that G = C5.

The converse is obvious. �

Chellali and Maffray [5] have obtained a characterization of split graphs G with
χd(G) = γ (G) + 1. In the following theorem we prove that χd(G) = ω(G) or ω(G) + 1
for any split graph G. Arumugam et al. [2] have used this theorem to prove that the
dominator coloring problem is NP-complete even for split graphs.

Theorem 3.2. Let G be a split graph with split partition (K , I ) and |K | = ω. Then
χd = ω or ω + 1. Furthermore χd = ω if and only if there exists a dominating set D of G
such that D ⊆ K and every vertex v in I is nonadjacent to at least one vertex in K − D.

Proof. The coloring of G given by C = {{v} : v ∈ K } ∪ {I } is a dominator coloring
of G and hence χd ≤ ω + 1. Thus χd = ω or ω + 1. Now suppose χd = ω. Let
C = {V1, V2, . . . , Vω} be a dominator coloring of G. Hence |Vi ∩ K | = 1. Let D = {x :
{x} ∈ C} and let v ∈ I. Any color class dominated by v is of the form {x}, where x ∈ D.

Hence it follows that D is a dominating set of G. Also, if Vi ∩ K = {x} where Vi ∈ C and
v ∈ Vi , then x ∈ K − D and v is nonadjacent to x .

Conversely, suppose there exists a dominating set D of G such that D ⊆ K and every
vertex v in I is nonadjacent to at least one vertex in K − D. Now we assign colors
1, 2, . . . , ω to the elements of K and for any vertex v in I we choose a vertex x in K − D
which is nonadjacent to v and assign the color of x to v. This gives a dominator coloring
of G with ω colors. �

Theorem 3.3. Let G = (X ∪ Y, E) be a bipartite graph and |X | ≤ |Y |. Then χd(Ḡ) =
ω(Ḡ) or ω(Ḡ) + 1. Further χd(Ḡ) = ω(Ḡ) if and only if one of the following is true.

(1) ω(Ḡ) > |Y |.
(2) |X | < |Y | and NḠ(x) ∩ Y �= ∅ for all x ∈ X.

(3) |X | = |Y |, NḠ(x) ∩ Y �= ∅ for all x ∈ X and NḠ(y) ∩ X �= ∅ for all y ∈ Y.

Proof. Since Ḡ is a perfect graph, it follows that χ(Ḡ) = ω(Ḡ). Hence ω(Ḡ) ≤ χd(Ḡ).

Let C be a χ -coloring of Ḡ using ω(Ḡ) colors. Clearly |Vi | ≤ 2 for all Vi ∈ C, and
|Vi | = 2 if and only if |Vi ∩ X | = |Vi ∩ Y | = 1.

Case i. ω(Ḡ) > |Y | ≥ |X |.
Since |X | ≤ |Y | < ω(Ḡ), there exist two color classes V1 and V2, such that V1 ∩ X = ∅

and V2 ∩ Y = ∅. Hence |V1| = |V2| = 1, so that C is a dominator coloring of Ḡ. Thus
χd(Ḡ) = ω(Ḡ).

Case ii. ω(Ḡ) = |Y | > |X |.
In this case there exists y j in Y such that {y j } ∈ C and hence every element of Y

dominates the color class {y j }. Now, suppose NḠ(x) ∩ Y �= ∅ for all x ∈ X. Let
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yx ∈ NḠ(x) ∩ Y. Then x dominates the color class which contains yx . Thus C is a dom-
inator coloring of Ḡ and χd(Ḡ) = ω(Ḡ). Now suppose there exists x ∈ X such that
NḠ(x) ∩ Y = ∅. Then in any dominator coloring of Ḡ, the color class which x domi-
nates is of the form {x1} where x1 ∈ X and hence it follows that χd(Ḡ) ≥ ω + 1. Now let
V1 ∈ C and x ∈ V1. Clearly |V1| = 2. Let V1 = {x, y}. Then C1 = (C − {v1}) ∪ ({x}, {y})
is a χd -coloring of Ḡ and hence χd(Ḡ) ≤ ω(Ḡ) + 1. Thus χd(Ḡ) = ω(Ḡ) + 1.

Case iii. ω(Ḡ) = |Y | = |X |.
Then |Vi | = 2 for each Vi ∈ C. Now if NḠ(x)∩Y �= ∅ for all x ∈ X and NḠ(y)∩X �= ∅

for all y ∈ Y, then C itself is a dominator coloring of Ḡ so that χd(Ḡ) = ω(Ḡ). Otherwise
proceeding as in Case ii, we get χd(Ḡ) = ω(Ḡ) + 1. �

4. Graphs with minimum degree 1

In this section we consider graphs with δ(G) = 1. The following theorem gives a lower
bound for χd(G) in terms of the number of support vertices.

Theorem 4.1. If G is a graph with δ(G) = 1 and k support vertices, then χd(G) ≥
k + 1, and χd(G) = k + 1 if and only if the set of nonsupport vertices is an independent
dominating set of G.

Proof. Let S denote the set of support vertices of G. Let v ∈ S. Then in any χd -coloring
of G either v or a leaf adjacent to v appears as a singleton color class and hence it follows
that χd(G) ≥ k + 1. Now, if V − S forms an independent dominating set of G, then
{{v} : v ∈ S} ∪ {V − S} is a dominator coloring of G, so that χd(G) = k + 1.

Conversely, suppose χd(G) = k + 1. Let C be a χd -coloring of G such that {v} is a
color class for every v ∈ S. Hence it follows that V − S is a color class in C and hence
V − S is an independent dominating set of G. �

COROLLARY 4.2

If G is any graph of order n, then χd(G ◦ K1) = n + 1.

Theorem 4.3. Let G be a graph with δ(G) = 1. Let V1 be the set of all support vertices
of G and let |V1| = k. Then χd(G) = k + 2 if and only if the following conditions are
satisfied:

(i) 〈V − V1〉 is a nontrivial bipartite graph, and
(ii) if V1 is not a dominating set, then 〈V − V1〉 contains exactly one nontrivial compo-

nent which is a complete bipartite graph with V2 = V − N [V1] as one of the partite
sets.

Proof. Suppose χd(G) = k + 2. Let C = {{v} : v ∈ V1} ∪ {C1, C2} be a χd -coloring
of G such that C1 contains all the pendant vertices of G. Clearly 〈V − V1〉 is a nontrivial
bipartite graph with bipartition C1, C2. Now, suppose V1 is not a dominating set. Then
V2 = V − N [V1] �= ∅ and every vertex of V2 dominates the color class C2. It follows that
V2 ⊆ C1 or V2 ⊆ C2. Hence 〈V − V1〉 contains exactly one nontrivial component which
is a complete bipartite graph with V2 as one of the partite sets.

Conversely, suppose (i) and (ii) are satisfied. Clearly χd(G) ≥ k + 2. Now if V1 is a
dominating set, then {{v} : v ∈ V1} ∪ {C1, C2}, where C1, C2 is a bipartition of 〈V − V1〉
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1 2 3 4 5 6

7 8
9

12 13

10 11

Figure 1. A tree with γ = 4 and χd = 5.

is a χd -coloring of G. If V1 is not a dominating set, then {{v} : v ∈ V1} ∪ {C1, C2}, where
C2 is the set consisting of V2 and all the isolated vertices of 〈V − V1〉 is a χd -coloring of
G. Hence χd(G) = k + 2. �

Theorem 4.4. Let G be any graph with δ(G) = 1. Then χd(G) > γ (G).

Proof. Let {V1, V2, . . . , Vk} be a χd -coloring of G in which every support vertex is a
singleton color class and the set of all leaves of G is contained in one color class, say V1.
Let S = {v2, v3, . . . , vk} where vi ∈ Vi , 2 ≤ i ≤ k. Clearly S contains all the support
vertices. We now claim that S is a dominating set of G. Let v ∈ V − S and let v dominate
the color class Vi . If i > 1, then vi dominates v. If i = 1, then v is either a support vertex
or a leaf and hence is dominated by S. Thus γ (G) ≤ |S| = χd(G) − 1. �

PROPOSITION 4.5

Let T be a tree of order n. If there exists a γ -set S in T such that V − S is independent,
then χd(T ) = γ (T ) + 1.

Proof. It follows from Theorem 1.4 that χd(T ) = γ (T ) + 1 or γ (T ) + 2. Let S =
{v1, v2, . . . , vk} be a γ -set in T such that V − S is independent. Then C = {{vi } : 1 ≤ i ≤
k} ∪ {{V − S}} is a χd -coloring of T and hence χd(T ) = γ (T ) + 1. �

Remark 4.6. The converse of Proposition 4.5 is not true. For the tree T given in
figure 1, the set D = {v1, v4, v6, v9} is a minimum dominating set and C =
{{v1}, {v6}, {v9}, {v3, v5}, {v2, v4, v7, v8, v10, v11, v12, v13}} is a χd -coloring of T . Hence
γ (T ) = 4, χd(T ) = 5. However, for any γ -set S in T, V − S is not independent.

5. Dominator chromatic number of the Mycielskian

In search for triangle-free graphs with arbitrarily large chromatic number, Mycielski [19]
gave an elegant graph transformation. For a graph G = (V, E), the Mycielskian of G is
the graph μ(G) with vertex set V ∪ V ′ ∪ {u}, where V ′ = {x ′ : x ∈ V } and is disjoint
from V , and E ′ = E ∪ {xy′ : xy ∈ E} ∪ {x ′u : x ′ ∈ V ′}. The vertices x and x ′ are called
twins of each other and u is called the root of μ(G). For recent results on the Mycielskian
of a graph, we refer to [3, 6–9, 17, 18]. The Mycielskian of C5 along with a dominator
coloring is given in figure 2.

It is well-known that χ(μ(G)) = χ(G)+1. However for dominator colorings, we have
the following theorem.
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2 4
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Figure 2. A dominator coloring of μ(C5).

Theorem 5.1. For any graph G, χd(G) + 1 ≤ χd(μ(G)) ≤ χd(G) + 2. Further if there
exists a χd-coloring C of G in which every vertex v dominates a color class Vi with v �∈ Vi ,
then χd(μ(G)) = χd(G) + 1.

Proof. If C is any χd -coloring of G, then C ∪ {V ′, {u}} is a dominator coloring of μ(G)

and hence χd(μ(G)) ≤ χd(G) + 2. Now let χd(μ(G)) = k. Let C = {V1, V2, . . . , Vk} be
a dominator coloring of μ(G) and let u ∈ V1.

Case i. V1 = {u}.
For each color α that appears on a vertex of V ′ but not on V , we choose an arbitrary

vertex x ′ of V ′ that has the color α and recolor its twin x ∈ V with color α. The restriction
of this coloring to G gives a dominator coloring of G with k − 1 colors.

Case ii. V1 �= {u}.
Let S = V1 ∩ V (G). Note that no vertex in V (G) dominates the color class V1. As in

Case i, for each color α that appears on a vertex of V ′ but not on V , we choose an arbitrary
vertex x ′ of V ′ that has the color α and recolor its twin x ∈ V with color α. Now for each
vertex v ∈ S, we recolor v with the color of its twin v′. Let C′ denote the restriction of
this coloring to V (G). We first show that C′ is a proper coloring of G. Let u and v be two
adjacent vertices in G. If both u and v are in V − S, obviously they have distinct colors. If
u ∈ S and v ∈ V − S, then v is adjacent to u′, and the new color of u is that of u′. Hence
u and v have distinct colors.

Now, let v ∈ V (G) and let Vi be the color class dominated by v in C. Since i �= 1, it
follows that v continues to dominate the same color class in C′. Thus χd(μ(G)) > χd(G),
and hence χd(μ(G)) = χd(G) + 1 or χd(G) + 2.

Now, if there exists a χd -coloring of G in which every vertex v dominates a color
class Vi with v �∈ Vi , then the coloring of μ(G) obtained by assigning the color of vi

to its twin v′
i and a new color to the root u, is a dominator coloring of μ(G). Hence

χd(μ(G)) = χd(G) + 1. �

There exist graphs with χd(μ(G)) = χd(G) + 1 or χd(μ(G)) = χd(G) + 2.

For the complete graph Kn , we have χd(μ(Kn)) = χd(Kn) + 1 = n + 1. Also for the
cycle C6, we have χd(μ(C6)) = χd(C6) + 1 = 5.

The following lemma gives an example of a graph with χd(μ(G)) = χd(G) + 2.

Lemma 5.2. χd(μ(C5)) = χd(C5) + 2.

Proof. Let C5 = (v1, v2, v3, v4, v5, v1). Since χd(C5) = 3, we need to prove that
χd(μ(C5)) = 5. Suppose χd(μ(C5)) = 4. Let C be a dominator coloring of μ(C5) using
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four colors 1, 2, 3 and 4. If all the colors appear on C5, then the root u does not dominate
a color class. Hence, we may assume that the vertices v1, v2, v3, v4 and v5 receive respec-
tively the colors 1, 2, 1, 2 and 3. If {v5} ∈ C, then v′

5 receives color 4 and hence the root
u receives color 1 or color 2. Hence color 4 appears on at least one of v′

1 or v′
4. It follows

that v′
5 does not dominate a color class, a contradiction. Hence {v5} �∈ C and v5 domi-

nates the color class 4. Now v′
5 receives color 3 and does not dominate any color class, a

contradiction. Thus χd(μ(C5)) = 5. �

6. Conclusion and scope

The following are some interesting problems for further investigation.

Problem 6.1. For which cycles Cn , χd(μ(Cn)) = χd(Cn) + 2?

Problem 6.2. Characterize graphs G for which χd(G) = χ(G) or χd(G) = γ (G).

Problem 6.3. Characterize trees T for which χd(T ) = γ (T ) + 1.

Problem 6.4. Characterize graphs G for which χd(μ(G)) = χd(G) + 1.

Problem 6.5. We have proved in [2] that the problem of determining the dominator chro-
matic number is NP-complete even for split graphs. Hence designing efficient algorithms
for computing χd(G) for special families of graphs is an interesting problem. In particular
does there exist a polynomial time algorithm for computing χd(T ) for trees?

Problem 6.6. We observe that the dominator chromatic number of a graph G may
increase arbitrarily on the removal of a vertex. For example χd(Wn) = χd(Cn−1 + K1) =
χ(Cn−1 + K1) = 3 or 4 according as n is odd or even and on removing the central vertex
of Wn, χd increases arbitrarily. Hence the study of changing and unchanging of the dom-
inator chromatic number on the removal of a vertex or an edge is an interesting problem
for further investigation.
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