B.Sc. DEGREE END SEMESTER EXAMINATION- NOVEMBER 2020

COURSE: MAJOR CORE
TIME: 90 MINUTES
PAPER: ELEMENTS OF GRAPH THEORY
MAX.MARKS: 50

SECTION -A

Answer all questions ($\mathbf{3} \times \mathbf{2}=\mathbf{6}$)

1. Define a cubic graph and prove that every cubic graph has an even number of points.
2. Give an example to show that the union of two distinct $u-v$ walks need not contain a cycle.
3. Prove that a finite directed graph G that is cycle-free contains a source and a sink.

> SECTION - B

Answer any three questions ($3 \times 8=24$)
4. (a) Define induced subgraph and automorphism of a graph G.
(b) Show that the following graphs are isomorphic.

5. (a) Let G be a connected graph with exactly $2 n(n \geq 1)$, odd vertices. Then prove that the edge set of G can be partitioned into n open trails.
(b) Prove that a line x of a connected graph G is a bridge if and only if x is not on any cycle of G.
6. Prove that every polyhedron has at least two faces with the same number of edges on the boundary.
7. (a) Prove that every connected graph has a spanning tree.
(b) Find the indegree and outdegree of the vertices in the given graph G.

SECTION - C
Answer any one question $(1 \times 20=20)$
8. (a) Prove that if A is the adjacency matrix of a graph with $V=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{p}}\right\}$ prove that for any $n \geq 1$ the $(i, j)^{\text {th }}$ entry of A^{n} is the number of $v_{i}-v_{j}$ walks of length n in G.
(b) State and prove Chavatal's theorem.
(c) Let G_{1} be a $\left(p_{1}, q_{1}\right)$ graph and G_{2} a $\left(p_{2}, q_{2}\right)$ graph then show that $G_{1} \times G_{2}$ is a $\left(p_{1} p_{2}, q_{1} p_{2}+q_{2} p_{1}\right)$ graph .
$(7+8+5)$
9. (a) Define centre of a tree and prove that every tree has a centre consisting of either one point or two adjacent points.
(b) Describe Warshall's algorithm to find the path matrix P of the directed graph G and further explain the modified Warshall's algorithm to find the shortest path.
(c) Define a graphic sequence and show that the partition $P=(4,4,4,2,2,2)$ is graphical and hence construct graphs realizing the partitions.

