STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI – 600 086 (For candidates admitted during the academic year 2019 – 20 & thereafter)

B.SC. DEGREE EXAMINATION, Dec 2020

BRANCH I – MATHEMATICS

SUBJECT CODE:19MT/MC/DC14

PAPER: Differential Calculus

TIME: 90 minutes MAX. MARKS: 50

Section - A

Answer all questions

 $(3 \times 2 = 6)$

- 1. Define envelope of the family of curves.
- 2. Find the stationary point of the function $xy + \frac{a^2}{x} + \frac{a^2}{y}$.
- 3. Write any two properties of logarithmic spiral.

Section – B

Answer any three questions

 $(3 \times 8 = 24)$

- 4. Find the n^{th} derivative of $\frac{x^2}{(x+1)^2(x+2)}$.
- 5. Determine the envelope of the curve $x \cos \alpha + y \sin \alpha = a \cos \alpha \sin \alpha$, where α is the parameter.
- 6. Find the equation of the circle of curvature at the point (2, 1) on the curve $y = x^2 4x + 3$.
- 7. Find the minimum value of $x^2 + y^2 + z^2$, when yz + zx + xy = 12.

Section - C

Answer any one question

 $(1 \times 20 = 20)$

- 8. (a) If $y = \cos(m\sin^{-1}x)$ show that (i) $(1 x^2)y_2 xy_1 + m^2y = 0$; (ii) $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y = 0$.
 - (b) Find the evolutes of the curve $x = a \cos \varphi$, $y = b \sin \varphi$ by treating it as the envelope of its normal.

(10+10)

- 9. (a) Find the radius of curvature of the curve $x = a\cos^3\theta$, $y = a\sin^3\theta$ at $\theta = \pi/4$.
 - (b) Classify double points on an algebraic curve f(x, y) and hence determine the existence and nature of the double points on the curve $(x 2)^2 = y(y 1)^2$.

(10+10)
