STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-86

(For candidates admitted during the year 2019 -2020)

SUBJECTCODE: 19MT/AC/MT35

B.Com. DEGREE EXAMINATION – December 2020

COURSE: ALLIED CORE TIME: 90 MINUTES PAPER: MATHEMATICS FOR COMMERCE **MAX.MARKS: 50**

SECTION - A

- 1. Show that $\begin{pmatrix} 0 & -1+i \\ 1+i & 0 \end{pmatrix}$ is skew-Hermitian.
- 2. Write the relation between the roots and the coefficients of the equation $x^3 sx^2 + tx + tx$ u=0.
- 3. Define solution and feasible solution of a LPP.

SECTION - B ANSWER ANY THREE QUESTIONS $(3 \times 8 = 24)$

- 4. Express $\begin{pmatrix} 2 & 3 & 5 \\ 3 & 4 & 7 \\ 6 & 2 & 7 \end{pmatrix}$ as the sum of symmetric and a skew-symmetric matrix.
- 5. Solve $6x^5 x^4 43x^3 + 43x^2 + x 6 = 0$.
- 6. Find the real root of $x^3 4x + 9 = 0$ by Newton-Raphson method correct to three decimal places.
- 7. Show that $\left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right)\frac{1}{9} + \left(\frac{1}{5} + \frac{1}{6}\right)\frac{1}{9^2} + \cdots = 9\log 3 12\log 2$

SECTION-C ANSWER ANY ONE QUESTION $(1 \times 20 = 20)$

- 8. a) Find the eigen values and eigen vectors for the matrix $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$.
 - b) Form the equation one of whose root is $\sqrt{2} + \sqrt{3}$. (13+7)
- 9. a) Using simplex method solve the LPP

Maximize
$$Z = x_1 + x_2 + 3x_3$$

Subject to $3x_1 + 2x_2 + x_3 \le 3$
 $2x_1 + x_2 + 2x_3 \le 2$
 $x_1, x_2, x_3 \ge 0$.

b) Prove that
$$\sum_{n=1}^{\infty} \frac{n^2 + 2}{n!} = 4e - 2$$
 (13+7)