STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI – 600 086

(For candidates admitted during the academic year 2019 – 20 & thereafter)

B.SC. DEGREE EXAMINATION, Dec 2020 BRANCH I – MATHEMATICS

SUBJECT CODE:19MT/AC/MP15

PAPER: Mathematics for Physics-I

TIME: 90 minutes MAX. MARKS: 50

Section - A

Answer all questions

 $(3 \times 2 = 6)$

- 1. State Cayley Hamilton theorem.
- 2. If $y = e^{-bx}$ then what is y_3 ?
- 3. Find the complete integral of z = px + qy 2p 3q.

Section - B

Answer any three questions

 $(3 \times 8 = 24)$

- 4. Find y_n when $y = tan^{-1} \frac{x}{a}$.
- 5. Solve: $\sqrt{p} + \sqrt{q} = 2x$.
- 6. Expand $f(x) = \begin{cases} 0 & 0 < x < \frac{\pi}{2} \\ c & \frac{\pi}{2} < x < \pi \end{cases}$ in a sine series valid when $0 \le x \le \pi$.
- 7. A firm manufactures two products A and B on which the profits earned per unit are Rs. 3 and Rs. 4 respectively. Each product is processed on two machines M₁ and M₂. Product A requires one minute of processing time on M₁ and two minutes on M₂, while B requires one minute on M₁ and one minute on M₂. Machine M₁ is available for not more than 7 hours 30 minutes while machine M₂ is available for 10 hours during any working day. Using graphical method, find the number of units of product A and B to be manufactured so as to maximize the profit.

Section - C

Answer any one question

 $(1 \times 20 = 20)$

- 8. (a) Find the eigen values and eigen vectors of the matrix $\begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$.
 - (b) Prove that $\int_{2}^{3} \sqrt{(x-2)(3-x)} \, dx = \frac{\pi}{8}$.

(10+10)

- 9. (a) Determine the Fourier expansion of the function $f(x) = x^2$ in the interval $-\pi \le x \le \pi$.
 - (b) Solve using simplex method: Maximize $z=2x_1+x_2$, subject to $4x_1+3x_2\leq 12$, $4x_1+x_2\leq 8$, $4x_1-x_2\leq 8$ and $x_1,x_2\geq 0$.

(10+10)
