STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-86

(For candidates admitted during the year 2015 and thereafter)

SUBJECT CODE: 15MT/MC/ED55

B.Sc. DEGREE END SEMESTER EXAMINATION- NOVEMBER 2020

COURSE: MAJOR CORE TIME: 90 MINUTES

PAPER: ELEMENTS OF DIFFERENTIAL EQUATIONS

MAX.MARKS: 50

SECTION - A

Answer **ALL** questions $(3 \times 2 = 6)$

- 1. Find the complementary function of the differential equation $y'' 7y' + 12y = x^2$
- 2. A mass of 2 kg is suspended from a spring with a known constant of 10N/m and allowed to come to rest. It is then set in motion by giving it an initial velocity of 150 cm/s. Find an expression for the motion of the mass, assuming no air resistance.
- 3. Differentiate between complete integral and particular integral of a partial differential equation.

SECTION - B

Answer any **THREE** questions $(3 \times 8 = 24)$

- 4. Find a particular solution y_p of $x^2y'' 2xy' + 2y = x^{9/2}$, given that $y_1 = x$, $y_2 = x^2$ are solutions of the complementary equation of $x^2y'' 2xy' + 2y = 0$.
- 5. Compute the coefficients $a_0, a_1, \dots a_5$ in the series solution $\sum_{n=0}^{\infty} a_n x^n$ of the IVP $(1+2x^2)y''+10xy'+8y=0$, y(0)=2, y'(0)=-3.
- 6. Rewrite the initial value problem $y_1' = y_1 + 2y_2 + 2e^{4t}$; $y_2' = 2y_1 + y_2 + e^{4t}$ in matrix form and verify that the vector function $y = \frac{1}{5} \begin{bmatrix} 8 \\ 7 \end{bmatrix} e^{4t} + c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-t}$ satisfies the system with initial condition $y(0) = \frac{1}{5} \begin{bmatrix} 3 \\ 22 \end{bmatrix}$.
- 7. Solve $(z^2 2yz y^2)p + (xy + zx)q = xy xz$

SECTION -C

Answer any **ONE** question $(1 \times 20 = 20)$

- 8. a) Find a particular solution of $y'' 4y' + 3y = e^{3x}(6 + 8x + 12x^2)$ by using the method of undetermined coefficients. (8)
 - b) Find a fundamental set of Frobenius solutions of $x^2(3+x)y'' + 5x(1+x)y' (1-4x)y = 0$. Give explicit formulas for the coefficients in the solutions. (12)
- 9. a) i) Find the complete integral of $p^2 + q^2 = x + y$ (4)

ii) Solve
$$z = px + qy + c\sqrt{1 + p^2 + q^2}$$
 (8)

b) Find the complete integral of
$$p^m sec^{2m}x + z^l q^n cosec^{2n}y = z^{\frac{lm}{m-n}}$$
 (8)