STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-86

(For candidates admitted during the year 2015 and thereafter)
SUBJECT CODE: 15MT/MC/ED55

B.Sc. DEGREE END SEMESTER EXAMINATION- NOVEMBER 2020

COURSE: MAJOR CORE
PAPER: ELEMENTS OF DIFFERENTIAL EQUATIONS

TIME: 90 MINUTES
MAX.MARKS: 50

SECTION - A

Answer ALL questions ($3 \times 2=6$)

1. Find the complementary function of the differential equation $y^{\prime \prime}-7 y^{\prime}+12 y=x^{2}$
2. A mass of 2 kg is suspended from a spring with a known constant of $10 \mathrm{~N} / \mathrm{m}$ and allowed to come to rest. It is then set in motion by giving it an initial velocity of $150 \mathrm{~cm} / \mathrm{s}$. Find an expression for the motion of the mass, assuming no air resistance.
3. Differentiate between complete integral and particular integral of a partial differential equation.

SECTION - B

Answer any THREE questions ($3 \times 8=24$)
4. Find a particular solution y_{p} of $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=x^{9 / 2}$, given that $y_{1}=x, y_{2}=x^{2}$ are solutions of the complementary equation of $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0$.
5. Compute the coefficients $a_{0}, a_{1}, \ldots \ldots . a_{5}$ in the series solution $\sum_{n=0}^{\infty} a_{n} x^{n}$ of the IVP $\left(1+2 x^{2}\right) y^{\prime \prime}+10 x y^{\prime}+8 y=0, y(0)=2, y^{\prime}(0)=-3$.
6. Rewrite the initial value problem $y_{1}^{\prime}=y_{1}+2 y_{2}+2 e^{4 t} ; y_{2}^{\prime}=2 y_{1}+y_{2}+e^{4 t}$ in matrix form and verify that the vector function $y=\frac{1}{5}\left[\begin{array}{l}8 \\ 7\end{array}\right] e^{4 t}+c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}1 \\ -1\end{array}\right] e^{-t}$ satisfies the system with initial condition $y(0)=\frac{1}{5}\left[\begin{array}{c}3 \\ 22\end{array}\right]$.
7. Solve $\left(z^{2}-2 y z-y^{2}\right) p+(x y+z x) q=x y-x z$

SECTION -C

Answer any ONE question ($1 \times 20=20$)
8. a)Find a particular solution of $y^{\prime \prime}-4 y^{\prime}+3 y=e^{3 x}\left(6+8 x+12 x^{2}\right)$ by using the method of undetermined coefficients.
b) Find a fundamental set of Frobenius solutions of $x^{2}(3+x) y^{\prime \prime}+5 x(1+x) y^{\prime}-(1-4 x) y=0$. Give explicit formulas for the coefficients in the solutions.
9. a) i) Find the complete integral of $p^{2}+q^{2}=x+y$
ii) Solve $z=p x+q y+c \sqrt{1+p^{2}+q^{2}}$
b) Find the complete integral of $p^{m} \sec ^{2 m} x+z^{l} q^{n} \operatorname{cosec}^{2 n} y=z^{\frac{l m}{m-n}}$

