STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI – 600 086

(For candidates admitted during the academic year 2015 – 16 & thereafter)

SUBJECT CODE: 15MT/MC/AS55

B.SC. DEGREE EXAMINATION, Dec 2020 BRANCH I – MATHEMATICS FIFTH SEMESTER

COURSE: MAJOR CORE

PAPER : ALGEBRAIC STRUCTURES

TIME : 90 minutes MAXIMUM MARKS : 50

SECTION -A

Answer **ALL** the questions $(3\times2=6)$

1. Show that the order of an element of a finite group divides the order of the group.

2. Find the inverse of
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8 \end{pmatrix}$$
.

3. Prove that if U and V are ideals of a ring R, then U + V is also an ideal of R.

SECTION -B

Answer *ANY THREE* questions $(3\times8=24)$

- 4. Show that the set of all 2×2 matrices with real entries and determinant 1 forms a group under matrix multiplication.
- 5. State and prove Lagrange's theorem.
- 6. Prove that the set of all even permutations A_n in S_n form a normal subgroup of index 2 in S_n .
- 7. Let R be the ring of integers and let U be the set of all integers consisting of the multiples of 17. Prove that U is a maximal ideal of R.

SECTION -C

Answer **ANY ONE** question $(1 \times 20 = 20)$

- 8. (a) Let G be a group and H a subgroup of G. Prove that the relation $a \equiv b \mod H$ is an equivalence relation.
 - (b). Prove that if *H* and *K* are finite subgroups of *G*, then $o(HK) = \frac{o(H)o(K)}{o(H \cap K)}$. (8+12)
- 9. Prove that every integral domain can be imbedded in a field.
