STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted from the academic year 2019-20)
SUBJECT CODE: 19MT/PC/PD34
M. Sc. DEGREE EXAMINATION, NOVEMBER 2020

BRANCH I - MATHEMATICS
THIRD SEMESTER

COURSE : CORE

PAPER : PARTIAL DIFFERENTIAL EQUATIONS

TIME : $1 ½$ HOURS
MAX. MARKS : 50

SECTION - A

ANSWER ALL THE QUESTIONS $(2 \times 2=4)$

1. When can you say two partial differential equations $f(x, y, z, p, q)=0$ and $g(x, y, z, p, q)=0$ are compatible?
2. Define the Dirac delta function.

SECTION - B

ANSWER ANY TWO QUESTIONS $(2 \times 6=12)$

3. If a characteristic strip contains at least one integral element of $F(x, y, z, p, q)=0$, then prove that it is an integral strip of the equation $F\left(x, y, z, z_{x}, z_{y}\right)=0$.
4. Explain briefly about boundary conditions and its three types.
5. Obtain the solution of the wave equation $u_{t t=} c^{2} u_{x x}$ under the conditions (i) $u(0, t)=u(2, t)=0$
(ii) $u(x, 0)=\sin ^{3} \frac{\pi x}{2}$
(iii) $u_{t}(x, 0)=0$.

SECTION - C

ANSWER ANY TWO QUESTIONS ($2 \times 17=34$)

6. a) Find the integral surface of the linear partial differential equation $x p+y q=z$ which contains the circle defined by $x^{2}+y^{2}+z^{2}=4$ and $x+y+z=2$.
b) State and solve the Neumann problem for a rectangle.
7. a) Show that the only integral surface of the equation $2 q(z-p x-q y)=1+q^{2}$ which is circumscribed about the paraboloid $2 x=y^{2}+z^{2}$ is the enveloping cylinder which touches it along its section by the plane $y+1=0$.
b) Derive three dimensional Laplace's equation in cartesian coordinates.
8.a) Solve the one-dimensional diffusion equation in the region $0 \leq x \leq \pi, t \geq 0$
subject to the conditions (i) T remains finite as $t \rightarrow \infty$ (ii) $T=0$, if $x=0$ and $x=\pi$ for all t
(iii) At $t=0, T=\left\{\begin{array}{rc}x, & 0 \leq x \leq \frac{\pi}{2} \\ \pi-x, & \frac{\pi}{2} \leq x \leq \pi\end{array}\right.$
b) Derive one dimensional wave equation.
