STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-86

(For candidates admitted during the year 2019 and thereafter)

SUBJECT CODE: 19MT/PC/FA34

M.Sc. DEGREE END SEMESTER EXAMINATION- NOVEMBER 2020

COURSE: CORE PAPER: FUNCTIONAL ANALYSIS

TIME: 90 MINUTES MAX.MARKS: 50

Section A Answer all questions (2 × 2 =4)

1. Define a Schauder basis and give an example.

2. Prove that $||A^*|| = ||A||$ where $A \in BL(H)$ and *H* is a Hilbert space.

Section B Answer any two questions $(2 \times 6 = 12)$

- 3. Prove that a linear map on a linear space *X* may be continuous with respect to some norm on *X*, but discontinuous with respect to another norm on *X*. Illustrate with an example.
- 4. Prove: Let *X* be a normed space and *E* be a subset of *X*. Then *E* is bounded in *X* if and only if f(E) is bounded in *K* for every $f \in X'$.
- 5. Let $\{u_{\alpha}\}$ be an orthonormal set in a Hilbert space *H*. Then show that the following conditions are equivalent.
 - a) span $\{u_{\alpha}\}$ is dense in *H*.
 - b) If $x \in H$ and $\langle x, u_{\alpha} \rangle = 0$ for all α , then x = 0.

Section C Answer any two questions $(2 \times 17 = 34)$

- 6. (a) Let X and Y be Banach spaces and $F: X \to Y$ be a closed linear map. Then prove that F is continuous.
 - (b) If X and Y are normed spaces and $X \neq 0$. Then prove that BL(X, Y) is a Banach space in the operator norm if and only if Y is a Banach space.

(9+8)

- 7. (a) Let *X* be a separable normed space. Prove that every bounded sequence in *X'* has a weak^{*} convergent subsequence.
 - (b) State and prove Riesz representation theorem.

(7+10)

- 8. (a) Let *H* be a Hilbert space and $A \in BL(H)$. Then prove that there is a unique $B \in BL(H)$ such that for all $x, y \in H$, $\langle A(x), y \rangle = \langle x, B(y) \rangle$.
 - (b) State and prove Generalized Schwarz inequality.
 - (c) Prove that in a Hilbert space *H*, if *A*, $B \in BL(H)$ are normal and if *A* commutes with B^* and *B* commutes with A^* , then A+B and AB are normal.

(6+7+4)