STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-600 086

(For candidates admitted during the academic year 2019-20 and thereafter)
SUBJECT CODE: 19MT/MC/AG24
B. Sc. DEGREE EXAMINATION

BRANCH I - MATHEMATICS
SECOND SEMESTER

COURSE : MAJOR CORE

PAPER : ANALYTICAL GEOMETRY
TIME : 90 MINUTES
MAX. MARKS: 50
SECTION - A
Answer ALL questions
$3 \times 2=6$

1. Prove that the sum of the squares of two conjugate semi diameters of an ellipse is constant.
2. Find the equation of the plane through the point $P(-2,3,-4)$ at right angles to $O P$ where O is the origin.
3. Write the condition for the general equation of second degree to represent a cone.

SECTION-B

Answer any THREE questions

$$
3 \times 8=24
$$

4. Find the nature of the conic $43 x^{2}+48 x y+57 y^{2}+10 x+180 y+25=0$. Find also the coordinates of the centre, length and position of the axes.
5. Find the equation of the hyperbola conjugate to $4 x^{2}+13 x y+3 y^{2}+x+3 y-25=0$.
6. Find the distance between the two planes $2 x-3 y+6 z+12=0,2 x-3 y+6 z-2=0$.
7. Find the symmetrical form of the line $4 x+4 y-5 z-12=0=8 x+12 y-13 z-32=0$.

SECTION-C
Answer any ONE question $\quad \mathbf{1} \times \mathbf{2 0}=\mathbf{2 0}$
8. (a) Prove that the lines $\frac{x-3}{2}=\frac{y-2}{-5}=\frac{z-1}{3} ; \frac{x-1}{-4}=\frac{y+2}{1}=\frac{z-6}{2}$ are coplanar. Find also their point of intersection and the plane through them.
(b) Find the equation of the cone whose vertex is $(1,2,3)$ and which passes through the circle $x^{2}+y^{2}+z^{2}=4, x-y+z=7$.
(10+10)
9. (a) Find the equation of the plane passing through the line of intersection of the planes
$2 x+y+3 z-4=0$ and $4 x-y+5 z-7=0$ and perpendicular to the plane $x+3 y-4 z+6=0$.
(b) If $x \cos \alpha+y \sin \alpha=p$ is a chord joining the ends of conjugate semi-diameters of the ellipse, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, show that $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=2 p^{2}$.

