STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-86

(For candidates admitted during the year 2019 and thereafter) SUBJECT CODE: 19MT/AC/MC25 B.Sc. DEGREE END SEMESTER EXAMINATION- APRIL 2021

COURSE: ALLIED CORE PAPER: MATHEMATICS FOR CHEMISTRY - II

TIME: 90 Minutes MAX.MARKS: 50

(4+4)

SECTION -A

Answer all questions $(3 \times 2 = 6)$

- 1. Find $L(te^{-5t})$.
- 2. State two merits of rank correlation coefficient.
- 3. Define a normal subgroup.

SECTION -B

Answer any three questions $(3 \times 8 = 24)$

- 4. Find $L(t^2 cosat)$.
- 5. Find inverse Laplace transform of $\frac{1}{(s+1)(s-2)(s+5)}$.
- 6. (a) For the permutations σ and τ defined on the set $S = \{1,2,3\}$ find the product $\sigma\tau$ for $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$.
 - (b) If *H* and *K* are subgroups of a group *G* then prove that $H \cap K$ is also a subgroup of *G*.
- 7. Find Karl Pearson's coefficient of correlation from the following data.

Wages	100	101	102	102	100	99	97	98	96	95
Cost of living	98	99	99	97	95	92	95	94	90	91

SECTION -C

Answer any one question $(1 \times 20 = 20)$

- 8. Expand e^x as a Fourier series in the range $(0, 2\pi)$.
- 9. (a) A random sample of 5 college students is selected and their grades in Mathematics and Statistics are found to be:

	1	2	3	4	5				
Mathematics	85	60	73	40	90				
Statistics	93	75	65	50	80				

Calculate Pearman's rank correlation coefficient.

(b) State Euler's theorem and Fermat's theorem. Prove that if *H* and *K* are two finite subgroups of a group *G* and if O(H) and O(K) are relatively prime, show that $H \cap K = \{e\}$. (10+10)