STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-600 086 (For candidates admitted during the academic year 2019–20 and thereafter) SUBJECT CODE: 15MT/ME/NA55 **B. Sc. DEGREE EXAMINATION, APRIL 2021 BRANCH I - MATHEMATICS** SIXTH SEMESTER

COURSE	:	MAJOR ELECTIVE
PAPER	:	NUMERICAL ANALYSIS
TIME	:	90 MINUTES

MAX. MARKS: 50

SECTION - A Ansv

 $(3 \times 2 = 6)$

- 1. Evaluate $(\Delta \nabla) x^2$ taking the interval of differencing as *h*.
- 2. Write the formula for $\frac{dy}{dx}$ at $x = x_n$ using the backward difference operator.
- 3. Using the modified Euler's method, find y(0.1) if $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1.

SECTION-B $(3 \times 8 = 24)$ Answer any **THREE** questions

- 4. Find the smallest positive root of the equation $x^3 2x + 0.5 = 0$ by Newton Raphson method.
- 5. Find an expression for the following:
 - (i) $\Delta \left[\frac{f(x)}{g(x)} \right]$ (ii) $\nabla^r f(x)$, for any positive integer r.
- 6. Find the value of $\log 2^{1/3}$ from $\int_0^1 \frac{x^2}{1+x^3} dx$ using Simpson's one-third rule with h = 0.25. 7. Solve the Poisson equation $u_{xx} + u_{yy} = -x^2y^2$ over the square region bounded by the
- lines x = 0, y = 3 given that u = 10 throughout the boundaries taking h = 1.

SECTION-C
Answer any ONE question
$$(1 \times 20 = 20)$$

8. Solve the system of equations using Gauss-Seidel iteration method:

$$4x + 2y + z = 14x + 5y - z = 10x + y + 8z = 20$$

9. a) Find the Taylor series solution of y (0.1), given that $\frac{dy}{dx} + y^2 = e^x$; y (0) = 1. Compute using the first five terms.

b) Find the maximum value of *y* from the following table:

x	9	10	11	12	13	14
у	1330	1340	1320	1250	1120	930

(8+12)
