STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600086
(For candidates admitted during the academic year 2015-16 \& thereafter)
SUBJECT CODE : 15MT/MC/VL65

B.SC. DEGREE EXAMINATION, April 2021
 BRANCH I - MATHEMATICS
 SIXTH SEMESTER

COURSE : MAJOR CORE
 PAPER : VECTOR SPACES AND LINEAR TRANSFORMATIONS TIME : 90 minutes

MAXIMUM MARKS : 50

SECTION -A

Answer $\boldsymbol{A} \boldsymbol{L} \boldsymbol{L}$ the questions ($3 \times 2=6$)

1. Let $V=\mathbb{R}^{2}$ be a vector space over the field \mathbb{R} of real numbers. Check whether the subset $W_{1}=\{(a, b) \mid a \geq 0, b \geq 0\} \subseteq V$ is a subspace of V.
2. Show that the orthogonal complement of a subspace of a vector space V is a subspace of V.
3. Construct an isomorphism from the vector space of symmetric 2×2 matrices onto \mathbb{R}^{3}.

SECTION -B

Answer ANY THREE questions ($3 \times 8=24$)
4. Prove that if V is the internal direct sum of $U_{1}, U_{2}, \ldots, U_{n}$, then V is isomorphic to the external direct sum of $U_{1}, U_{2}, \ldots, U_{n}$.
5. Prove that if V is a vector space and $u, v \in V$, then $|\langle u, v\rangle| \leq\|u\|\|v\|$.
6. Prove that if V is finite-dimensional vector space over F, then $T \in A(V)$ is regular if and only if T maps V onto V.
7. Orthogonally diagonalize the matrix $\left[\begin{array}{ccc}1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4\end{array}\right]$.

SECTION -C

Answer ANY ONE question ($1 \times 20=20$)
8. (a) State and prove the homomorphism theorem for vector spaces.
(b) Prove that if $v_{1}, v_{2}, \ldots, v_{n}$ is a basis of the vector space V over F, and if $w_{1}, w_{2}, \ldots, w_{m}$ in V are linearly independent over F, then $m \leq n$.
9. (a) State and prove Gram-Schmidt orthogonalization process.
(b) Let U be a vector space with bases B and B^{\prime}. Let P be the transition matrix from B^{\prime} to B. If T is a linear operator on U, having matrices A and A^{\prime} with respect to the bases B and B^{\prime} respectively, then obtain the relation between P, A and A^{\prime}.

$$
(12+8)
$$

