STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2015–16& thereafter)

SUBJECT CODE: 15MT/MC/CA65

B.Sc DEGREE EXAMINATION, APRIL - 2021. END SEMESTER EXAMINATION BRANCH I - MATHEMATICS SIXTH SEMESTER

COURSE: MAJOR - COREPAPER: PRINCIPLES OF COMPLEX ANALYSISTIME: 90 Mins

MAX. MARKS: 50

Section – A Answer ALL questions $(3 \times 2 = 6)$

- 1. Verify the function $e^{x}(cosy isiny)$ is analytic.
- 2. State and prove fundamental theorem of algebra.
- 3. Evaluate $\int_C \frac{dz}{z^2+4}$, where C is |z-i| = 2.

Section – B Answer any THREE questions $(3 \times 8 = 24)$

- 4. Show that $u = \log \sqrt{x^2 + y^2}$ is harmonic and determine its conjugate and hence find the corresponding analytic function f(z).
- 5. Find the bilinear transformation which maps $z_1 = -i, z_2 = 0, z_3 = i;$

into $w_1 = -1, w_2 = i, w_3 = 1$.

- 6. State and prove Cauchy's Residue theorem and find the residue of $\int_C \frac{3z-4}{z(z-1)}$, where C is |z| = 2.
- 7. State and prove Taylors series theorem for any analytic function.

Section – C Answer any ONE question $(1 \times 20 = 20)$

- 8. a) Brief on the elementary transformation of the function $w = e^{Z}$ in the complex plane.
 - b) If $f(z) = \frac{z+4}{(z+3)(z-1)^2}$ find Laurent's series expansions in the region (i) 0 < |z-1| < 4, (ii) |z-1| > 4.
 - c) Prove that any analytic function whose imaginary part is constant is itself a constant,
- 9. a) State and prove Cauchy Integral formula and find $\int_C \frac{e^{az}}{z^{n+1}}$, where C is $|z| = \frac{1}{2}$. b) Prove that $I = \int_0^{\pi} \frac{ad\theta}{a^2 + \sin^2\theta} = \frac{\pi}{\sqrt{a^2 + 1}}$ (a > 0). (10+10)

1. Find the bilinear transformation which maps $z_1 = -i, z_2 = 0, z_3 = i;$ into $w_1 = -1, w_2 = i, w_3 = 1$