STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted from the academic year 2019-20)
SUBJECT CODE: 19MT/PE/MS15

M. Sc. DEGREE EXAMINATION, APRIL 2021
 BRANCH I - MATHEMATICS
 FOURTH SEMESTER

COURSE : ELECTIVE

TIME : 90 MINUTES
PAPER : MATHEMATICAL STATISTICS
MAX. MARKS : 50

SECTION - A
 ANSWER $\boldsymbol{A L L}$ THE QUESTIONS $(2 \times 2=4)$

1. What is the distribution followed by the variable $X=\lambda Y+\mu, \lambda>0$ if Y has the density function of the form $\frac{1}{2} e^{-|y|}$?
2. What are the conditions for an unbiased estimate U of the parameter Q to be most efficient?

SECTION - B

ANSWER ANY TWO QUESTIONS ($2 \times 6=12$)
3. Define two-point distribution. Find the characteristic function of zero - one distribution and hence find the central moments μ_{1}, μ_{2} of zero - one distribution.
4. Let $F_{n}(x), n=1,2, \ldots$ be the distribution function of a random variable X_{n}. Prove that the sequence $\left\{X_{n}\right\}$ is stochastically convergent to zero if and only if the sequence $\left\{F_{n}(x)\right\}$ satisfies the relation $\lim _{n \rightarrow \infty} F_{n}(x)=\left\{\begin{array}{l}0 \text { for } x \leq 0 \\ 1 \text { for } x>0\end{array}\right.$.
5. Define student's non-central t-statistic and derive its density function.

SECTION - C

ANSWER ANY TWO QUESTIONS ($2 \times 17=34$)
6. The joint distribution of the dependent variables X, Y is given by the density
7. a) Derive the distribution function of Chi-Square variate and State any two properties of Chi-square curve.
b) State and prove Lindeberg - Levy theorem.
8. State and prove the Rao-Cramer inequality.

