STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-600 086
(For candidates admitted during the academic year 2019-20 and thereafter)
SUBJECT CODE: 19MT/PC/LA24
M. Sc. DEGREE EXAMINATION - APRIL 2021

BRANCH I - MATHEMATICS
SECOND SEMESTER
COURSE : MAJOR CORE
PAPER : LINEAR ALGEBRA
TIME : 90 MINUTES
MAX. MARKS: 50

SECTION - A
 Answer ALL questions

1. Prove that similarity is an equivalence relation on $A(V)$?
2. Define sesqui-linear form.

SECTION - B
 Answer any TWO questions

3. Prove that if the matrix $A \in F_{n}$ has all its characteristic roots in F, then there is a matrix $C \in F_{n}$ such that $C A C^{-1}$ is a triangular matrix.
4. Let A be a 4×4 matrix with minimal polynomial $m(t)=\left(t^{2}+1\right)\left(t^{2}-3\right)$. Find the rational canonical form for A if A is a matrix over
i) the rational field Q
ii) the real field R
5. If $T: V \rightarrow W$ is a linear transformation, then prove that $\operatorname{dim} V=\operatorname{rank} T+\operatorname{nullity} T$.

SECTION - C

Answer any TWO questions
6. If $T \in A(V)$ is nilpotent, of index n_{1}, prove that a basis of V can be found such that the matrix of T in this basis has the form

$$
\left[\begin{array}{cccccc}
M n_{1} & 0 & \cdot & \cdot & \cdot & 0 \\
0 & M n_{2} & \cdot & \cdot & \cdot & 0 \\
\cdot & & \cdot & & & \cdot \\
\cdot & & & \cdot & & \cdot \\
\cdot & & & & \cdot & \cdot \\
0 & 0 & \cdot & \cdot & . & M n_{r}
\end{array}\right] .
$$

where $n_{1} \geq n_{2} \geq \ldots \geq n_{r}$ and where $n=n_{1}+n_{2}+\ldots+n_{r}=\operatorname{dim}_{F} V$.
7. (a) Prove that the elements $S, T \in A_{F}(V)$ are similar in $A_{F}(V)$ if and only if they have the same elementary divisors.
(b) Let V be a finite dimensional vector space over F and T be a linear operator on V. Also, if the minimal polynomial for T has the form $\left(x-c_{1}\right)\left(x-c_{2}\right) \ldots\left(x-c_{k}\right)$ where $c_{1}, c_{2}, \ldots, c_{k}$ are distinct elements of F, then prove that T is diagonalizable.
(10+7)
8. (a) Let V be a finite dimensional inner product space, T - a linear operator on V and B be an orthonormal basis for V. Suppose that the matrix A of T in the basis B is upper triangular then prove that T is normal iff A is a diagonal matrix.
(b) Let f be a form on a finite dimensional vector space V and let A be the matrix of f in an ordered basis B. Prove that f is a positive form if and only if $A=A^{*}$ and the principal minors of A are all positive.

