STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-600 086 (For candidates admitted during the academic year 2019–20 and thereafter) SUBJECT CODE: 19MT/PC/LA24

M. Sc. DEGREE EXAMINATION - APRIL 2021

BRANCH I - MATHEMATICS SECOND SEMESTER

COURSE : MAJOR CORE

PAPER : LINEAR ALGEBRA

TIME : 90 MINUTES MAX. MARKS: 50

$\begin{array}{c} \textbf{SECTION} - \textbf{A} \\ \textbf{Answer } \underline{\textbf{ALL}} \ \textbf{questions} \end{array}$ (2×2=4)

- 1. Prove that similarity is an equivalence relation on A(V)?
- 2. Define sesqui-linear form.

SECTION – B
Answer any TWO questions
$$(2\times6=12)$$

- 3. Prove that if the matrix $A \in F_n$ has all its characteristic roots in F, then there is a matrix $C \in F_n$ such that CAC^{-1} is a triangular matrix.
- 4. Let *A* be a 4×4 matrix with minimal polynomial $m(t) = (t^2 + 1)(t^2 3)$. Find the rational canonical form for *A* if *A* is a matrix over
 - i) the rational field Q
 - ii) the real field R
- 5. If $T: V \to W$ is a linear transformation, then prove that dim $V = \operatorname{rank} T + \operatorname{nullity} T$.

SECTION – C Answer any <u>TWO</u> questions (2×17=34)

6. If $T \in A(V)$ is nilpotent, of index n_1 , prove that a basis of V can be found such that the matrix of T in this basis has the form

where $n_1 \ge n_2 \ge ... \ge n_r$ and where $n = n_1 + n_2 + ... + n_r = \dim_F V$.

7. (a) Prove that the elements S, $T \in A_F(V)$ are similar in $A_F(V)$ if and only if they have the same elementary divisors.

- (b) Let V be a finite dimensional vector space over F and T be a linear operator on V. Also, if the minimal polynomial for T has the form $(x-c_1)(x-c_2)...(x-c_k)$ where $c_1, c_2, ..., c_k$ are distinct elements of F, then prove that T is diagonalizable.
- 8. (a) Let *V* be a finite dimensional inner product space, *T* a linear operator on *V* and *B* be an orthonormal basis for *V*. Suppose that the matrix *A* of *T* in the basis *B* is upper triangular then prove that *T* is normal iff *A* is a diagonal matrix.
 - (b) Let f be a form on a finite dimensional vector space V and let A be the matrix of f in an ordered basis B. Prove that f is a positive form if and only if $A = A^*$ and the principal minors of A are all positive. (8+9)
