STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86

 (For candidates admitted during the academic year 2019-20\& thereafter)
SUBJECT CODE: 19CH/PC/QG24

M.Sc. DEGREE EXAMINATION, APRIL 2021

BRANCH IV - CHEMISTRY

SECOND SEMESTER

COURSE: MAJOR CORE

PAPER: QUANTUM CHEMISTRY AND GROUP THEORY
TIME: 90 minutes
MAX.MARKS:50
SECTION-A
Answer all the questions
($11 \times 1=11$ Marks)
I. Choose the correct answer:

1. Which among the following is a well-behaved wave function?
a) $e^{x^{2}}$
b) e^{x}
c) e^{-x}
d) $e^{i \theta}$
2. The zero point energy of a particle in a one-dimensional box is:
a) 0
b) $\mathrm{h}^{2} / 8 \mathrm{ma}^{2}$
c) $3 \mathrm{~h}^{2} / 8 \mathrm{ma}^{2}$
d) $h^{2} / 8 m^{2} a^{2}$
3. The Hermite polynomial for $\mathrm{n}=1$ is:
a) $4 q^{2}$
b) 1
c) $2 q^{2}-2$
d) $2 q$
4. Identify the molecule which does not possess a centre of symmetry
a) 1,4-dichloro-2,5-difluorobenzene
b) dichloromethane
c) staggered ferrocene
d) benzene

II Fill in the blanks:

5. The commutator for $[\widetilde{L} \bar{x}, \widehat{L} \bar{y}]$ is \qquad
6. The conjugate of σ_{xz} in $\mathrm{C}_{2 \mathrm{v}}$ point group is \qquad
7. The symmetry of vibrational ground state of water molecule is \qquad
8. In the character table of $\mathrm{C}_{3 \mathrm{v}}$ point group, there are \qquad one dimensional IRR and \qquad two dimensional IRR.

III Answer in a line or two:
9. What is a rigid rotator with fixed axis?
10. Determine the position of the node on the r -axis for the 2 s orbital of Hydrogen atom.
11. Prove that reflections through planes perpendicular to each other commute.

SECTION - B

Answer any three questions

12. Explain HMO treatment to 1,3-butadiene and arrive its wave function and energy.
13. a) Prove that the operators \hat{A} and \hat{B} do not commute with each other for the function $\sin x$ and also prove that the commutator is a unit operator.
b) The eigen value for a particle confined to move in a 3 D box is $17 \mathrm{~h}^{2} / 8 \mathrm{ma}^{2}$. Determine the quantum numbers n_{x}, n_{y}, n_{z} and the degree of degeneracy.
14. a) In the electronic spectrum of Formaldehyde, the π to π^{*} transition is symmetry allowed, while the n to π^{*} is symmetry forbidden. Explain the above statement using Group theory.
b) Explain the Symmetry operations: rotations and reflections in methane molecule.
15. Identify the point groups of the following compounds and give their symmetry elements, order and number of classes.
a.
b.
c.
d.

SECTION - C

Answer any One question

(1x15=15 marks)

16. a) Prove that the angular momentum of rigid rotator is quantised.
b) Apply perturbation theory to helium atom and determine the first order perturbation correction energy for the ground state.
c) Write the character table of $\mathrm{C}_{2 \mathrm{v}}$ point group.
17. a) Determine the position of the node on the r axis for the 3 p orbital of the Be^{3+} ion. [3]
b) Derive the ground state and excited state wave functions of He atom and prove that the electrons are paired in one excited state and parallel in three excited states.
c) Show that $\mathrm{H}_{2} \mathrm{O}$ molecule belongs to abelian group whereas NH_{3} molecule belongs to nonabelian group.
