STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2015-16 & thereafter)

SUBJECT CODE: 15CH/MC/PC64

B.Sc. DEGREE EXAMINATION, APRIL 2021 BRANCH IV – CHEMISTRY SIXTH SEMESTER

SIXTH SEMESTER						
PAPE	RSE: MAJOR COR R: PHYSICAL CHE C: 90 MINUTES	MA	XX. MARKS: 50			
SECTION - A						
Answ	er all the Questions			(15x1=15 marks)		
I. Choo	se the correct answer:					
1.	The rate law for the r	reaction				
	$\operatorname{Cl}_2(g) + \operatorname{CHCl}_3(g) \to \operatorname{HCl}(g) + \operatorname{CCl}_4(g)$					
	$Rate = k[Cl]^{1/2}[CHCl_3]$					
	The units for k, assuming time in seconds and concentration in mol/L is					
	a. $L^{1/2}$ /mol ^{1/2} •s	b. L/mol•s.	c. $L^{-1/2}/\text{mol}^{-1/2} \cdot s$.	d. $L^{1/2}/\text{mol}^{1/2} \cdot \text{s}^{-}$		
2.	The ionic strength 0.01M Na ₂ SO ₄ is given as					
	a. 0.01m	b. 0.02m	c.0.03m	d.0.04m		
3.	The specific conductance of an electrolyte of concentration 0.01 M is $1.4 \times 10^{-5} \text{ S m}^{-1}$					
	Its equivalent conduc	ctance is				
	a. 0.14	b. 1.4	c. 14	d. 140		
4.	When 4 molecules undergo chemical change by the absorption of one quantum of			of one quantum of		
	light. The quantum y	rield is				
	a.1	b. 2	c. 3	d. 4		
5.	5. The standard reduction potential of a metal is negative. This means the metal can					
	a. undergo oxidation	readily	b. undergo reduction	on readily		
	c. undergo displacen	nent readily	d. None of the above	ve		

a. NH₄Cl b. CH₃COONa c. NaCl d. CH₃COONH₄

6. The salt that does not undergo hydrolysis is

7. A voltaic cell is constructed based on the oxidation of zinc metal and the reduction of silver cations. Solutions of silver nitrate and zinc nitrate also were used. Locate the zinc nitrate on the diagram, and identify the anode.

a. Zinc nitrate = a; anode = d

b. Zinc nitrate = a; anode = Zinc

c. Zinc nitrate = c; anode = d

d. Zinc nitrate = c; anode = Zinc

II. Fill in the blanks:

- 8. pH of 0.1N solution of ammonium cyanide ($K_a = 4.9 \times 10^{-10}$, $K_b = 1.8 \times 10^{-5}$) is ____
- 9. When NH₄Cl is added to a solution of NH₄OH, the dissociation of ______ is suppressed.
- 10.Ostwald dilution law is applicable to ______ electrolytes.
- 11. As concentration increases rate of the reaction ______.
- 12. An example of maxima suppressors used in polarography is _____

III. Answer in a line or two:

13. Represent a cell for the following cell reaction:

$$Pb(s) + Sn^{+4}(aq) \rightarrow Pb^{+2}(aq) + Sn^{+2}(aq)$$

- 14. Molecularity
- 15. Salt bridge

SECTION B

Answer any three of the following:

(5x3 = 15marks)

16. Discuss Lindemann's theory of unimolecular reactions.

- 17. Describe the determination of transport number of an ion using moving boundary method.
- 18.a. Calculate degree of dissociation of 0.01M $CH_2ClCOOH$, given that the λ_M° values for HCl, KCl and $CH_2ClCOOK$ are 4.261, 1.4986 and 1.132 Sm^2mol^{-1} respectively.

The molar conductance at 0.01M is 2.134 Sm²mol⁻¹. (3)

b. What is E^O for the following balanced reaction? (2)

$$Al(s) + Fe^{3+}(aq) \rightarrow Al^{3+}(aq) + Fe(s)$$

Given: Standard Reduction Potential

$$Fe^{3+}(aq) + 2e \rightarrow Fe(s) -----+0.771$$

$$Al^{3+}(aq) + 2e \rightarrow Al(s) - - - - 1.660$$

- 19. Derive an expression for pH of a salt solution of sodium acetate.
- 20. Give an account on DME.

SECTION C

Answer any two of the following:

(2x10=20marks)

21.a. Explain concentration cells without transference.

(6)

b. Explain the kinetics of formation hydrogen chloride.

(4)

- 22.a. Discuss in detail the transition state theory. (6)
- b. The value of E° for the following reaction is 0.189

$$4H^{+}(aq) + Fe(s) + NO_{3}(aq) \rightarrow Fe^{3+}(aq) + NO(aq) + 2H_{2}O(1)$$
 E* = 0.189 V 0.1 M 0.6 M 1.0 M 0.5 M

Evaluate Ecell and ΔG of the above cell? (4)

- 23.a. Explain the theory involved in use of quinhydrone electrode in the determination of strength of a given acid. (4)
 - b. Derive an expression for rate constant of first order reaction. (3)

c. The rate constant of a second order reaction is 5.70x10 ⁻⁵ dm ³ mol ⁻ s ⁻ at	tant of a second order reaction is 5.70x10 ⁻⁵ dm ³ mol ⁻⁵ at 25°C and		
1.64x10 ⁻⁴ dm ³ mol ⁻ s ⁻ at 40°C. Calculate the activation energy and preexp	n energy and preexponential		
factor.	(3)		
*********************************	*******		