STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600086

(For candidates admitted from the academic year 2015-16\& thereafter)
SUBJECT CODE: 15CH/MC/SP64

B.Sc. DEGREE EXAMINATION, APRIL 2021
 BRANCH IV - CHEMISTRY
 SIXTH SEMESTER

COURSE: MAJOR CORE

PAPER: SPECTROSCOPY

TIME: 90 MINUTES
MAX.MARKS: 50

SECTION -A

Answer all the questions

($\mathbf{1 5} \times 1=15$ Marks)

I. Choose the correct answers

1. If the wavelength of a radiation is 2.85μ, then the corresponding wave number is \qquad
a) $350.8 \mathrm{~cm}^{-1}$
b) $3508 \mathrm{~cm}^{-1}$
c) $402 \mathrm{~cm}^{-1}$
d) $4028 \mathrm{~cm}^{-1}$
2. The number of signals observed in ${ }^{13} \mathrm{C}$ NMR decoupled spectrum of acetaldehyde is \qquad
a) 2
b) 5
c) 1
d) 3
3. In mass spectrometer the energy required for the electron bombardment is in the range of \qquad eV
a) $1-5$
b) $20-30$
c) $10-15$
d) $50-60$
4. The solvent used in NMR technique is \qquad
a) hexachloroacetone
b) ethanol
c) toluene
d) tetramethylsilane
5. The selection rule for rotational - vibrational Raman spectra is \qquad
a) $\Delta V= \pm 1$ and $\Delta J=0$
b) $\Delta V= \pm 2$ and $\Delta J=0, \pm 1$
c) $\Delta V= \pm 1$ and $\Delta J=0, \pm 1$
d) $\Delta V= \pm 1$ and $\Delta \mathrm{J}= \pm 1$

II. Fill in the blanks:

6. The number of waves which can pass through a point in one second is called \qquad
7. The C-O stretching frequency is \qquad for tertiary than primary alcohol
8. The zero point energy in vibrational spectroscopy is \qquad
9. The increase in $\lambda_{\text {max }}$ values is called as \qquad shift
10. Karplus equation for $\phi=0^{\circ}$ to 90° is \qquad
III. Answer in one or two lines:
11. What is NMR transition?
12. Define Nitrogen rule.
13. What is isosbestic point?
14. What is fermi resonance?
15. What is time-of-flight analyser?

SECTION - B

Answer any three of the following:

16. Discuss the fragmentation pattern and draw the mass spectrum for :
(i)

(ii)

17. Explain Franck - Condon principle.
18. Identify the chemical shift values and spin-spin coupling for the following compounds in
${ }^{1}$ H NMR .
($\mathbf{2} \times \mathbf{2}^{1 / 2}=5$ Marks)
(i)

(ii)

19a. Calculate the bond length of CO molecule, if it's first rotation spectrum line appears at $3.84 \times 10^{2} \mathrm{~m}^{-1}$ (Atomic weight of $\mathrm{C}=12 \mathrm{a} . \mathrm{m} . \mathrm{u} \& \mathrm{O}=16 \mathrm{a} . \mathrm{m} . \mathrm{u}$)
b. Compare the relative IR stretching frequencies for $\mathrm{C}-\mathrm{C}, \mathrm{C}=\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}$ bonds.
20. Explain the solvent and conjugation effects in UV-visible absorption bands.

SECTION - C

Answer any TWO of the following:
21a. Discuss the principle, instrumentation, sampling and solvents/ standards used in FTIR technique.
b. Determine the $\lambda_{\max }$ values using Woodward-Fieser rule for the following :($\mathbf{2} \mathbf{x 1} 1 / 2=\mathbf{3}$ Marks)
(i)

(ii)

22a.The IR and ${ }^{1} \mathrm{H}$ NMR spectra of a compound with the molecular formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$ are provided below. Major mass spectra fragment peaks are also observed at $\mathrm{m} / \mathrm{z}=43,60$, and 73 . Calculate the m / z for the molecular ion. Deduce the structure of the compound?
(2+2+2+1=7 Marks)

b. What is coupling constant? Give its significance.

23a. Discuss Mclafferty rearrangement for the given compound:

b. What are Stokes and Antistokes lines. Explain.
c. The C-H stretching frequency is observed at $3000 \mathrm{~cm}^{-1}$. Calculate the force constant of
$\mathrm{C}-\mathrm{H}$ bond. The atomic mass of C is 12.000 a.m.u and H is 1.008 a.m.u.
(3 Marks)

